187 resultados para TIGHT GAS. Low permeability. Hydraulic fracturing. Reservoir modeling. Numerical simulation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Yaoyingtai Block is located within the northeastern Changling Depression of southern Songliao Basin, where the reservoir sandstones are petrophysically characterized by very low permeability, which results in the low success probability of artificial fracturing, and the low oil yield by water injection in the course of oil production. In order to improve the situations as stated above, this research aims to work out an integral fracturing technology and strategy applicable to the low permeable reservoirs in Yaoyingtai Block. Under the guidance of geological theory, reservoir engineering and technology, the subsurface occurrences of natural and hydraulic fractures in the reservoirs are expected to be delineated, and appropriate fracturing fluids and proppants are to be optimized, based on the data of drilling, well logging, laboratory and field experiments, and geological data. These approaches lay the basis of the integral fracturing technology suitable for the low permeable reservoir in the study area. Based on core sample test, in-situ stress analysis of well logging, and forward and inversion stress field modeling, as well as fluid dynamic analysis, the maximum in-situ stress field is unraveled to be extended nearly along the E-W direction (clustering along N85-135°E) as is demonstrated by the E-W trending tensional fractures. Hydraulic fractures are distributed approximately along the E-W direction as well. Faulting activities could have exerted obvious influences on the distribution of fractures, which were preferentially developed along fault zones. Based on reservoir sensitivity analysis, integrated with studies on rock mechanics, in-situ stress, natural fracture distribution and production in injection-production pilot area, the influences of primary fractures on fracturing operation are analyzed, and a diagnostic technology for primary fractures during depressurization is accordingly developed. An appropriate fracturing fluid (hydroxypropyl guar gum) and a proppant (Yixing ceramsite, with a moderate-density, 0.45-0.9mm in size) applicable to Qingshankou Formation reservoir are worked out through extensive optimization analysis. The fracturing fluid can decrease the damage to the oil reservoir, and the friction in fracturing operation, improving the effect of fracturing operation. Some problems, such as sand-out at early stage and low success rate of fracturing operations, have been effectively solved, through pre-fracturing formation evaluation, “suspension plug” fracturing, real-time monitoring and limited-flow fracturing. Through analysis of fracture-bearing tight reservoir with variable densities and dynamic analysis of influences of well patterns on fracturing by using numerical simulation, a fracturing operation scheme for the Qingshankou Formation reservoir is proposed here as being better to compress the short factures, rather than to compress the long fractures during hydraulic fracturing. It is suggested to adopt the 450m×150m inverted 9-spot well pattern in a diamond shape with wells placed parallel to fractures and a half fracture length of 60-75m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new mathematical model for the transient flow in the composite low permeability is established. It is solved by FEM with different boundary conditions such as infinite, circular closed and constant pressure boundary conditions. The typical curves for transient wellbore pressure have been presented. It is shown that the pressure and pressure derivative curves with composite start-up pressure gradients have different slopes which are depended on the start-up pressure gradients and the mobility radios in different regions. The boundary effects are the same as the normal reservoirs without start-up pressure gradients. The study provides a new tool to analyze the transient pressure test data in the low permeability reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the plasma flow and heat transfer characteristics of low-power (kW class) arc-heated thrusters (arcjets) with 2:1 hydrogen/nitrogen to simulate decomposed hydrazine as the propellant. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, the Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. Typical computed results about the temperature, velocity and Mach number distributions within arcjet thruster are presented for the case with arc current of 9 A and inlet stagnant pressure of 3.3×105 Pa to show the flow and heat transfer characteristics. It is found that the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip, and the flow transition from the subsonic to supersonic regime occurs within the constrictor region. The effect of gas viscosity on the plasma flow within arcjet thruster is examined by an additional numerical test using artificially reduced values of gas viscosity. The test results show that the gas viscosity appreciably affects the plasma flow and the performance of the arcjet thruster for the cases with the hydrazine or hydrogen as the propellant. The integrated axial Lorentz force in the thruster nozzle is also calculated and compared with the thrust force of the arcjet thruster. It is found that the integrated axial Lorentz force is much smaller than the thrust force for the low-power arcjet thruster. Modeling results for the NASA 1-kW class arcjet thruster with simulated hydrazine as the propellant are found to be reasonably consistent with available experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reservoir prediction techniques from prestack seismic are among the most important ones for exploration of lithologic hydrocarbon reservoir. In this paper, we set the turbidite fan sandstone reservoir in Liao-Zhong depress as our researching target, and aims to solve the apllication difficulties on pre-stack inversion in the area, where the drilling data is scarce and the reservoir is lateral varied. Meanwhile, AVO analysis and pre-stack inversion for gas-bearing detection is systematically researched. The seismic reflection characters of gas-bearing sandstone in turbidite fan with different fluid content are defined, after analyzing results from AVO seismic simulation and porous fluid replacement of real log data, and under the guides of the seismic characters from classical gas-bearing sandstone reservoir and numerical simulation for complicate gas-bearing sandstone. It is confirmed that detecting gas-bearing sandstone in turbidite fan via AVO technologies is feasible. In terms of AVO analysis, two AVO characters, fluid detection factor and product of intercept and gradient, can effectively identify top and bottom boundaries and lateral range of tuibidite gas sand by comparing real drilling data. Cross-plotting of near and far angle stack data could avoid the correlation existing in P-G analysis. After comparing the acoustic impedance inversions with routine stacked data and AVO intercept, impedance derived from AVO intercept attribute could reduce the acoustic impedance estimating error which is caused by AVO. On the aspect of elastic impedance inversion, the AVO information in the pre-stack gathers is properly reserved by creating partial angle stack data. By the far angle elastic impedance alone, the gas sand, with abnormally low range of values, can be identified from the background rocks. The boundary of gas sand can also be clearly determined by cross-plotting of near and far angle elastic impedances. The accuracy of far angle elastic impedance is very sensitive to the parameter K, and by taking the statistical average of Vp/Vs on the targeted section in key wells, the accuracy of low frequency trends is gurranteed; the intensive absorsion within the area of the gas sand, which tends to push the spectral of seismic data to the lower end, will cause errors on the inversion result of elastic impedance. The solution is to confine the inversion on the interested area by improving the wavelet. On the aspect of prestack AVA simultaneous inversion, the constraint of local rock-physical trends between velocities of P-wave、S-wave and density successfully removes the instability of inversion, thus improves the precision of the resulting elastic parameters. Plenty of data on rock properties are derived via AVO analysis and prestack seismic data inversion. Based on them, the fluid anomaly is analysized and lithological interpretation are conducted. The distribution of gas sand can be consistently determined via various of ways, such as cross-plotting of P and G attributes, near and far partial angle stack data, near and far angle elastic impedances, λρ and Vp/Vs, etc. The shear modulo and density are also reliable enough to be used for lithological interpretation. We successfully applied the AVO analysis and pre-stack inversion techniques to gas detecting for turbidite fan sand reservoir in Liao-Zhong depression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOz concentration is reduced. The same result can be obtained from chemical equilibrium analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed fluidization is of considerable interest in process engineering for improving fluidization quality. Quantitative understanding of the pulsed two-phase flow behaviors is very important for proper design and optimum operation of such contactors. The

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the issues of modeling, numerical methods, and simulation with comparison to experimental data for the particle-fluid two-phase flow problem involving a solid-liquid mixed medium. The physical situation being considered is a pulsed liquid fluidized bed. The mathematical model is based on the assumption of one-dimensional flows, incompressible in both particle and fluid phases, equal particle diameters, and the wall friction force on both phases being ignored. The model consists of a set of coupled differential equations describing the conservation of mass and momentum in both phases with coupling and interaction between the two phases. We demonstrate conditions under which the system is either mathematically well posed or ill posed. We consider the general model with additional physical viscosities and/or additional virtual mass forces, both of which stabilize the system. Two numerical methods, one of them is first-order accurate and the other fifth-order accurate, are used to solve the models. A change of variable technique effectively handles the changing domain and boundary conditions. The numerical methods are demonstrated to be stable and convergent through careful numerical experiments. Simulation results for realistic pulsed liquid fluidized bed are provided and compared with experimental data. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model for coupled multiphase fluid flow and sedimentation deformation is developed based on fluid-solid interaction mechanism. A finite difference-finite element numerical approach is presented. The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances, and the coupled model has practical significance for oilfield development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The controlled equations defined in a physical plane are changed into those in a computational plane with coordinate transformations suitable for different Mach number M(infinity). The computational area is limited in the body surface and in the vicinities of detached shock wave and sonic line. Thus the area can be greatly cut down when the shock wave moves away from the body surface as M(infinity) --> 1. Highly accurate, total variation diminishing (TVD) finite-difference schemes are used to calculate the low supersonic flowfield around a sphere. The stand-off distance, location of sonic line, etc. are well comparable with experimental data. The long pending problem concerning a flow passing a sphere at 1.3 greater-than-or-equal-to M(infinity) > 1 has been settled, and some new results on M(infinity) = 1.05 have been presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristicsespecially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input samewere simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在对喷流噪声研究进展广泛调研的基础上,本论文采用柱坐标下轴对称的线化欧拉方程(LEE)、空间四阶时间二阶精度的MacCormack差分格式,对水下气体喷流的混合噪声产生与辐射特性进行数值模拟研究。采用基于经验公式的积分计算方法来确定求解线化欧拉方程所需的平均流场,对边界条件给予特殊处理以避免声波通过时产生反射。本文计算声明,线化欧拉方程及其相应的高阶数值方法提供了一个可以预报水下气体喷流混合噪声传播的省时高效的途径。给出的结果指出:由于水介质的密度很大,水下气体喷流远场收集到的噪声强度比同样情况下空中气体喷流要小,这说明水下发射导弹更具隐蔽性。同时,由于水介质中的声速很大,水下的高速喷流噪声场呈现更加均匀的性态,而不是象空中混合噪声在下游沿一定的方向辐射。鉴于本文只考虑常温情况,气体喷流速度是影响喷流噪声产生与辐射的重要参数:马赫数增大,远场的噪声强度随之增大。另外,水下喷流噪声的特性还与扰动频率有关。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of experimental system to study hydrate dissociation in porous media is built and some experiments on hydrate dissociation by depressurization are carried out. A mathematical model is developed to simulate the hydrate dissociation by depressurization in hydrate-bearing porous media. The model can be used to analyze the effects of the flow of multiphase fluids, the kinetic process and endothermic process of hydrate dissociation, ice-water phase equilibrium, the variation of permeability, convection and conduction on the hydrate dissociation, and gas and water productions. The numerical results agree well with the experimental results, which validate our mathematical model. For a 3-D hydrate reservoir of Class 3, the evolutions of pressure, temperature, and saturations are elucidated and the effects of some main parameters on gas and water rates are analyzed. Numerical results show that gas can be produced effectively from hydrate reservoir in the first stage of depressurization. Then, methods such as thermal stimulation or inhibitor injection should be considered due to the energy deficiency of formation energy. The numerical results for 3-D hydrate reservoir of Class 1 show that the overlying gas hydrate zone can apparently enhance gas rate and prolong life span of gas reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the development of oil/gas seismic exploration, seismic survey for fracture/porosity type reservoir is becoming more and more important. As for China, since it has over 60% store of low porosity and low permeability oil/gas reservoir, it’s more urgent to validly describe fracture/porosity type oil/gas trap and proposing the related, developed seismic technique. To achieve mapping fracture/porosity region and its development status, it demands profound understanding of seismic wave propagation discipline in complex fractured/pored media. Meanwhile, it has profound scientific significance and applied worth to study forward modeling of fracture/porosity type media and pre-stacked reverse time migration. Especially, pre-stacked reverse-time migration is the lead edge technique in the field of seismology and seismic exploration. In this paper, the author has summarized the meaning, history and the present state of numerical simulation of seismic propagation in fractured/pored media and seismic exploration of fractured/pored reservoirs. Extensive Dilatancy Anisotropy (EDA) model is selected as media object in this work. As to forward modeling, due to local limitation of solving spatial partial derivative when using finite-difference and finite-element method, the author turns to pseudo-spectral method (PSM), which is based on the global characteristic of Fourier transform to simulate three-component elastic wave-field. Artifact boundary effect reduction and simulation algorithm stability are also discussed in the work. The author has completed successfully forward modeling coding of elastic wave-field and numerical simulation of two-dimensional and three-dimensional EDA models with different symmetric axis. Seismic dynamic and kinematical properties of EDA media are analyzed from time slices and seismic records of wave propagation. As to pre-stacked reverse-time migration for elastic wave-field in fractured/pored media, based on the successful experience in forward modeling results with PSM, the author has studied pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field in two dimensional EDA media induced by preferred fracture/pore distribution. At the same time, different image conditions will bring up what kind of migration result is detailed in this paper. The author has worded out software for pre-stacked reverse-time depth-domain migration of elastic wave-field in EDA media. After migration processing of a series of seismic shot gathers, influences to migration from different isotropic and anisotropy models are described in the paper. In summary, following creative research achievements are obtained:  Realizing two-dimensional and three-dimensional elastic wave-field modeling for fractured/pored media and related software has been completed.  Proposed pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field.  Through analysis of the seismic dynamic and kinematical properties of EDA media, the author made a conclusion that collection of multi-component seismic data can provide important data basis for locating and describing the fracture/pore regions and their magnitudes and the preferred directions.  Pre-stacked reverse-time depth-domain migration technique has the ability to reconstruct complex geological object with steep formations and tilt fracture distribution. Neglecting seismic anisotropy induced by the preferred fracture/pore distribution, will lead to the disastrous imaging results.