102 resultados para THYROID STATUS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 mu g L-1) and gene expression patterns were examined 15 d post-fertilization. The expression of several genes in the HIPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), ioclothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TR alpha and TR beta), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 mu g L-1 PFOS. A significant increase in NIS and Diol gene expression was observed at 200 mu g L-1 PFOS exposure, while TG gene expression was down-regulated at 200 and 400 mu g L-1 PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TR alpha and TR beta gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T-4) content remained unchanged, whereas triiodothyronine (T-3) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic– pituitary–thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 lg L 1) and gene expression patterns were examined 15 d post-fertilization. The expression of several genes in the HPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), iodothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TRa and TRb), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 lg L 1 PFOS. A significant increase in NIS and Dio1 gene expression was observed at 200 lg L 1 PFOS exposure, while TG gene expression was down-regulated at 200 and 400 lg L 1 PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TRa and TRb gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T4) content remained unchanged, whereas triiodothyronine (T3) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited information is available on the prevalence among rural Africans of host genetic polymorphisms conferring resistance to HIV-1 infection or slowing HIV disease progression.We report the allelic frequencies of the AIDS-related polymorphisms CCR2-64I, SDF1-3#A, and CCR5-D32 in 321 volunteers from 7 ethnic groups in Cameroon. Allelic frequencies differed among the 7 ethnic groups, ranging from 10.8% to 31.3% for CCR2-64I and 0.0% to 7.1% for SDF1-3#A. No CCR5-D32 alleles were found. HIV seroprevalence was 6.9% in the total population and peaked at younger ages in girls and women than in boys and men. Among 15- to 54-year-olds, HIV seroprevalence varied from 2.0% to 11.1% among the village populations. Conditional logistic regression analysis using data from boys and men aged 15 to 54 years showed the number of CCR2-64I alleles to be a significant risk factor for HIV seropositivity (odds ratio per allele adjusted for age and matched on ethnic group = 6.3, 95% confidence interval: 1.3–30.3); this association was not found in women. The findings are consistent with the hypothesis that CCR2-64I alleles may delay HIV disease progression without affecting susceptibility to infection among men. We did not observe this relation among women, and other factors, such as multiple pregnancies or maternal stressors (eg, breastfeeding), may have masked any protective effect of CCR2-64I alleles. Further study of this issue among women is warranted. SDF1-3#A did not differ between HIV-seropositive and HIV-seronegative individuals but wasassociated with increasing age among HIV-seronegative women, suggesting a protective effect against HIV-1 infection.