31 resultados para THYMOCYTE APOPTOSIS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian cells subjected to conditions of spaceflight and the microgravity environment ofspace; manifest a number of alterations in structure and function. Among the most notable changes incells flown on the Space Shuttle are reduced growth activation and decline in growth rate in the totalpopulation. Other changes include chromosomal aberrations, inhibited locomotion, alteredcytokine production, changes in PKC distribution, and increased apoptos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The TTL.6 gene is a member of the tubulin-tyrosine ligase (TTL) family involved in apoptosis and preferentially expressed in the testis. We sequenced the coding region and part of the introns of TTL.6 in world wide human populations and five representativ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though it generates healthy adults, nuclear transfer in mammals remains an inefficient process. Mainly attributed to abnormal reprograming of the donor chromatin, this inefficiency may also be caused at least partly by a specific effect of the clonin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexabromocyclododecane (HBCD) is widely used as a brominated flame retardant, and has been detected in the aquatic environment, wild animals, and humans. However, details of the environmental health risk of HBCD are not well known. In this study, zebrafish embryos were used to assess the developmental toxicity of the chemical. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of HBCD (0, 0.05, 0.1, 0.5, and 1.0 mg L-1) until 96 h. Exposure to 0.1, 0.5, and 1.0 mg L-1 HBCD significantly increased the malformation rate and reduced survival in the 0.5 and 1.0 mg L-1 HBCD exposure groups. Acridine orange (AO) staining showed that HBCD exposure resulted in cell apoptosis. Reactive oxygen species (ROS) was significantly induced at exposures of 0.1, 0.5, and 1.0 mg L-1 HBCD. To test the apoptotic pathway, several genes related to cell apoptosis, such as p53, Puma, Apaf-1, caspase-9, and caspase-3, were examined using real-time PCR. The expression patterns of these genes were up-regulated to some extent. Two anti-apoptotic genes, Mdm2 (antagonist of p53) and Bcl-2 (inhibitor of Bax), were down-regulated, and the activity of capspase-9 and caspase-3 was significantly increased. The overall results demonstrate that waterborne HBCD is able to produce oxidative stress and induce apoptosis through the involvement of caspases in zebrafish embryos. The results also indicate that zebrafish embryos can serve as a reliable model for the developmental toxicity of HBCD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are used extensively as flame-retardants and are ubiquitous in the environment and in wildlife and human tissue. Recent studies have shown that PBDEs induce neurotoxic effects in vivo and apoptosis in vitro. However, the signaling mechanisms responsible for these events are still unclear. In this study, we investigated the action of a commercial mixture of PBDEs (pentabrominated diphenyl ether, DE-71) on a human neuroblastoma cell line, SK-N-SH. A cell viability test showed a dose-dependent increase in lactate dehydrogenase leakage and 3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction. Cell apoptosis was observed through morphological examination, and DNA degradation in the cell cycle and cell apoptosis were demonstrated using flow cytometry and DNA laddering. The formation of reactive oxygen species was not observed, but DE-71 was found to significantly induce caspase-3, -8, and -9 activity, which suggests that apoptosis is not induced by oxidative stress but via a caspase-dependent pathway. We further investigated the intracellular calcium ([Ca2+](i)) levels using flow cytometry and observed an increase in the intracellular Ca2+ concentration with a time-dependent trend. We also found that the N-methyl d-aspartate (NMDA) receptor antagonist MK801 (3 mu M) significantly reduced DE-71-induced cell apoptosis. The results of a Western blotting test demonstrated that DE-71 treatment increases the level of Bax translocation to the mitochondria in a dose-dependent fashion and stimulates the release of cytochrome c (Cyt c) from the mitochondria into the cytoplasm. Overall, our results indicate that DE-71 induces the apoptosis of ([Ca2+](i)) in SK-N-SH cells via Bax insertion, Cyt c release in the mitochondria, and the caspase activation pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C1q family proteins with C1q domain have been reported in vertebrates, but their biological roles are currently unknown. In this study, a C1q-like factor, designated Carassius auratus gibelio ovary-specific C1q-like factor (CagOC1q-like), was identified as a cortical granules component. Immunofluorescence localization revealed that the C1q family member was specifically expressed in follicular epithelial cells, and associated with cortical granules in fully grown oocytes. Moreover, it was discharged to the perivitelline space and egg envelope upon fertilization. As it is the first identified C1q family member that is expressed in follicular cells that surround oocyte, CagOC1q-like was applied to detection of follicular cell apoptosis and deletion. The entire cytological process of follicular cell apoptosis and deletion was clearly seen from double visualizations of follicular cells with CagOC1q-like immunofluorescence and apoptotic follicular cells labeled by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) during oocyte maturation and ovulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Except for the complement C1q, the immunological functions of other C1q family members have remained unclear. Here we describe zebrafish C1q-like, whose transcription and translation display a uniform distribution in early embryos, and are restricted to mid-hind brain and eye in later embryos. In vitro studies showed that C1q-like could inhibit the apoptosis induced by ActD and CHX in EPC cells, through repressing caspase 3/9 activities. Moreover, its physiological roles were studied by morpholino-mediated knockdown in zebrafish embryogenesis. In comparison with control embryos, the C1q-like knockdown embryos display obvious defects in the head and cramofacial development mediated through p53-induced apoptosis, which was confirmed by the in vitro transcribed C1q-like mRNA or p53 MO co-injection. TUNEL assays revealed extensive cell death, and caspase 3/9 activity measurement also revealed about two folds increase in C1q-like morphant embryos, which was inhibited by p53 MO co-injection. Real-time quantitative PCR showed the up-regulation expression of several apoptosis regulators such as p53, mdm2, p21, Box and caspase 3, and down-regulation expression of hbae1 in the C1q-like morphant embryos. Knockdown of C1q-like in zebrafish embryos decreased hemoglobin production and impaired the organization of mesencephalic vein and other brain blood vessels. Interestingly, exposure of zebrafish embryos to UV resulted in an increase in mRNA expression of C1q-like, whereas over-expression of C1q-like was not enough resist to the damage. Furthermore, C1q-like transcription was up-regulated in response to pathogen Aeromonas hydrophila, and embryo survival significantly decreased in the C1q-like morphants after exposure to the bacteria. The data suggested that C1q-like might play an antiapoptotic and protective role in inhibiting p53-dependent and caspase 3/9-mediated apoptosis during embryogenesis, especially in the brain development, and C1q-like should be a novel regulator of cell survival during zebrafish embryogenesis. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When tobacco BY-2 cells were treated with 60 mu g/mL MC-RR for 5 d, time-dependent effects of MC-RR on the cells were observed. Morphological changes such as abnormal elongation, evident chromatin condensation and margination, fragmentation of nucleus and formation of apoptotic-like bodies suggest that 60 mu g/mL MC-RR induced rapid apoptosis in tobacco BY-2 cells. Moreover, there was a significant and rapid increase of ROS level before the loss of mitochondrial membrane potential (Delta Psi(m)) and the onset of cell apoptosis. Ascorbic acid (AsA), a major primary antioxidant, prevented the increase of ROS generation, blocked the decrease in Delta Psi(m) and subsequent cell apoptosis, indicating a critical role of ROS in serving as an important signaling molecule by causing a reduction of Delta Psi(m) and MC-RR-induced tobacco BY-2 cell apoptosis. In addition, a specific mitochondrial permeability transition pores (PTP) inhibitor, cyclosporin A (CsA), significantly blocked the MC-RR-induced ROS formation, loss of Delta Psi(m), as well as cell apoptosis when the cells were MC-RR stressed for 3 d, suggesting that PTP is involved in 60 mu g/mL MC-RR-induced tobacco cell apoptosis signalling process. Thus, we concluded that the mechanism of MC-RR-induced apoptosis signalling pathways in tobacco BY-2 cells involves not only the excess generation of ROS and oxidative stress, but also the opening of PTP inducing loss of mitochondrial membrane potential. (C) 2007 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are an important class of halogenated organic brominated flame retardants. Because of their presence in abiotic and biotic environments widely and their structural similarity to polychlorinated biphenyls (PCBs), concern has been raised on their possible adverse health effects to humans. This study was designed to determine the anti-proliferative, apoptotic properties of decabrominated diphenyl ether (PBDE-209), using a human hepatoma Hep G2 line as a model system. Hep G2 cells were cultured in the presence of PBDE-209 at various concentrations (1.0-100.0 mu mol/L) for 72 h and the percentage of cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results showed that PBDE-209 inhibited the cells viability in time and concentration-dependent characteristics at concentrations (10.0-100.0 mu mol/L). We found that anti-proliferative effect of PBDE-209 was associated with apoptosis on Hep G2 cells by determinations of morphological changes, cell cycle and apoptosis. Mechanism study showed that PBDE-209 could increase the generation of intracellular reactive oxygen species (ROS) concentration-dependently. Antioxidant N-acetylcyteine partially inhibited the increase of ROS. The mechanism for its hepatoma-inhibitory effects was the induction of cellular apoptosis through ROS generation. In addition, activity of lactate dehydrogenase (LDH) release increased when the cells incubated with PBDE-209 at various concentrations and times. These results suggested that PBDE-209 had the toxicity activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fish cell line, fathead minnow (FHM) cell, was used to investigate the alteration of mitochondrial dynamics and the mechanism of apoptosis under Rana grylio virus (RGV) infection. Microscopy observations, flow-cytometry analysis and molecular marker detection revealed the apoptotic fate of the RGV-infected cells. Some typical apoptotic characteristics, such as chromatin condensation, DNA fragmentation and mitochondrial fragmentation, were observed, and significantly morphological changes of mitochondria, including size, shape, internal structure and distribution, were revealed. The mitochondria in RGV-infected cells were aggregated around the viromatrix, and the aggregation could be blocked by colchicine. Moreover, the Delta psi m collapse was induced, and caspase-9 and caspase-3 were activated in the RGV-infected cells. In addition, NF-kappa B activation and intracellular Ca2+ increase were also detected at different times after infection. The data revealed the detailed dynamics of mitochondrion-mediated apoptosis induced by an iridovirus, and provided the first report on mitochondrial fragmentation during virus-induced apoptosis in fish cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfluorinated organic compounds (PFOCs) are emerging persistent organic pollutants (POPs) widely present in the environment, wildlife and human. We studied the cellular toxicology of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on oxidative stress and induction of apoptosis in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Cultured hepatocytes were exposed to PFOS or PFOA (0, 1, 5, 15 and 30 mg L-1) for 24 h, and a dose-dependent decrease in cell viability was determined using trypan blue exclusion method. Significant induction of reactive oxygen species (ROS) accompanied by increases in activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were found, while activities of glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were decreased. Glutathione (GSH) content was reduced following treatment of PFOA and PFOS. A dose-dependent increase in the lipid peroxidation (LPO) level (measured as maleic dialdehyde, MDA) was observed only in the PFOA exposure groups, whereas LPO remained unchanged in the PFOS exposure groups. Furthermore, a significant activation of caspase-3, -8, -9 activities was evident in both PFOS and PFOA exposure groups. Typical DNA fragmentation (DNA laddering) was further characterized by agarose gel electrophoresis. The overall results demonstrated that PFOS and PFOA are able to produce oxidative stress and induce apoptosis with involvement of caspases in primary cultured tilapia hepatocytes. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C-Phycocyanin (C-PC) from blue-green algae has been reported to have various pharmacological characteristics, including antiinflammatory and anti-tumor activities. In this study, we expressed the beta-subunit of C-PC (ref to as C-POP) in Escherichia coli. We found that the recombinant C-PC/beta has anti-cancer properties. Under the treatment of 5 mu M of the recombinant C-PC/beta, four different cancer cell lines accrued high proliferation inhibition and apoptotic induction. Substantially, a lower response occurred in non-cancer cells. We investigated the mechanism by which C-PC/beta inhibits cancer cell proliferation and induces apoptosis. We found that the C-PC/beta interacts with membrane-associated beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Under the treatment of the C-PC/beta, depolymerization of microtubules and actin-filaments were observed. The cells underwent apoptosis with an increase in caspase-3, and caspase-8 activities. The cell cycle was arrested at the G0/G1 phase under the treatment of C-PC/beta. In addition, the nuclear level of GAPDH decreased significantly. Decrease in the nuclear level of GAPDH prevents the cell cycle from entering into the S phase. Inhibition of cancer cell proliferation and induction of apoptosis may potentate the C-POP as a promising cancer prevention or therapy agent. (c) 2006 Elsevier Ireland Ltd. All rights reserved.