7 resultados para THERMOLUMINESCENT DOSIMETRY
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this work, alpha-Al2O3:C, a highly sensitive thermoluminescence dosimetry crystal, was grown by the EFG method in which a graphite heating unit and shield acted as the carbon source during the growth process. The optical, luminescent properties and dosimetric characteristics of the crystal were investigated. The as-grown crystal shows a single glow peak at 536 K, which is associated with Cr3+ ions. After annealing in H-2 at 1673 K for 80 h, the crystal shows a single glow peak at 460 K and a blue emission band at 415 nm. The thermoluminescent response of the annealed crystal shows linear-sublinear-saturation characteristics in the dose range from 5 x 10(-6) to 100 Gy.
Resumo:
In this work, an alpha-Al2O3:C crystal with highly sensitive thermoluminescence was directly grown by the temperature gradient technique (TGT) using Al2O3 and graphite powders as raw materials. The optical and luminescent properties and the dosimetric characteristics of the crystal were investigated. An as-grown alpha-Al2O3:C crystal shows a single glow peak at 462 K and a blue emission peak at 415 nm. The thermoluminescence (TL) response of the crystal shows a linear-sublinear-saturation characteristic. In the dose range from 5 x 10(-6) to 10Gy, the alpha-Al2O3:C crystal shows excellent linearity, and saturation was observed at about 30Gy. The sensitivity of the crystal decreases as the heating rate increases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline powder sample of KSr4(BO3)(3) was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Tb3+, TM3+ and Ce3+, on thermoluminescence (TL) of KSr4(BO3)(3) Phosphor was discussed. The TL, photoluminescence (PL) and some dosimetric properties of Ce3+-activated KSr4(BO3)(3) phosphor were studied. The effect of the concentration of Ce3+ on TL intensity was investigated and the result showed that the optimum Ce3+ concentration was 0.2 mol%. The TL kinetic parameters of KSr4(BO3)(3):0.002 Ce3+ phosphor were calculated by computer glow curve deconvolution (CGCD) method. Characteristic emission peaking at about 407 and 383 nm due to the 4f(0)5d(1) -> F-2((5/2),(7/2)) transitions of Ce3+ ion were observed both in PL and three-dimensional (3D) TL spectra. The dose-response of KSr4(BO3)(3):0.002 Ce3+ to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of KSr4(BO3)(3):0.002 Ce3+ was also investigated.
Resumo:
采用高温固相扩散反应合成了稀土元素激活的碱土硼酸盐MB4O7:RE(M=Sr, Ba;RE=D又Tb,Tm, Ho);过渡金属硼酸盐Zn4B6O13:RE(RE=Dy,Tb,Tm,Ho); Zn(BO2)2:RE(RE=Dy,Tb,Tm,Ho);碱土磷酸盐M3(PO4)2:RE(M=Sr,Ba;RE=Du, Tb)。通过)。RD和琅光谱对其结构进行了表征。测定了上述化合物的红外、荧光、余辉、漫反射和热释光谱及剂量学性质。研究了高能60Co伽玛射线和p-射线辐照下,稀土离子激活的碱土硼酸盐 MB407:Dy(M=Sr,Ba);过渡金属硼酸盐Zn4B6O13:Dy;Zn(BO2)2:Dy,Zn毋o承:Tb; 碱土磷酸盐Sr3(PO4)2:Dy的三维热释光谱及MB4O7:Dy(M=Sr,B)的电子顺磁共 振谱(EPR)的性质。发现稀土离子激活剂的浓度在一定的范围内增加时,能够改变陷阱的分布,不同深度陷阱的相对分布发生变化,使峰温向高温方向移动,这可提高剂量器的 热稳定性。发现稀土离子对材料的热释发光亦存在浓度碎灭作用。通过热释发光曲线;结合定量公式,计算了一些硼酸盐化合物的动力学参数。首次应用荧光、三维热释光谱等手段确证了高能60Co伽玛射线和p-射线辐 照没有导致稀土离子D3+和Tb3+的价态变化,即未改变为二价或四价化合物。研究了这类电子俘获材料的存储机理和辐照前后,基质和稀土离子的物理、化学 变化。通过电子顺磁共振谱卿)分析了缺陷的类型,即在高能60Co伽玛射线和p 一射线辐照下,存在空穴和电子两类陷阱中心。热释发光曲线与电子顺磁共振谱 的快衰退部分对应着浅陷阱能级,而慢衰退部分对应着深陷阱能级,陷阱能级是 连续分布的。在个人防护和临床治疗剂量范围内,筛选出7个60Co伽玛射线和中能x一射 线辐照下具有应用前景的高效热释发光材料,为深入研究打下基础。研究了高能p-射线辐照下,两.种潜在的具有应用前景的用于辐射加工剂量范围的p-射线固体剂量计材料。
Resumo:
国科图
Resumo:
The Sr2Mg(BO3)(2) phosphors doped respectively with Tm3+, Tb3+ and Dy3+ as activator were prepared by high temperature solid-state reaction. All the thermo luminescence curves of the phosphors consisted of two isolated peaks and the Dy3+ activated sample exhibited the strongest thermo luminescence intensity. The kinetic parameters of the thermoluminescence of Sr2Mg(BO3)(2):0.04 Dy were calculated employing the peak shape method and 3 dimensional thermo luminescent emission spectra were observed peaking at 480, 579, 662 and 755 nm due to the characteristic transition of Dy3+. In addition, the pre-irradiation heat-treatment and the thermoluminescence dose response of Sr2Mg(BO3)(2):0.04 Dy were investigated.