3 resultados para TDDFT
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The electronic structures and spectral properties of three Re(I) complexes [Re(CO)(3)XL] (X = Br, Cl; L = 1-(4-5 '-phenyl-1.3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethyl benzimidazol-2-yl)pyridi ne (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were full optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively.
Resumo:
The quantum yield, lifetime, and absorption spectrum of four [Ru(bpy)(2)L](+) [where bpy is 2,2'-bipyridyl; L is represented by the deprotonated form of 2-(1H-tetrazol-5-yl)pyridine (L1) or 2-(1H-tetrazol-5-yl)pyrazine (L2)], as well as their methylated complexes [Ru(bpy)(2)LMe](2+) (RuL1Me and RuL2Me) are closely ligand dependent. In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) were performed to compare the above properties among these complexes. The calculated results reveal that the replacement of pyridine by pyrazine or the attachment of a CH3 group to the tetrazolate ring greatly increases the pi-accepting ability of the ancillary ligands.
Resumo:
Density functional theory (DFT) electronic structure calculations were carried out to predict the structures and the absorption and emission spectra for porphyrin and a series of carbaporphyrins-carbaporphyrin, adj-dicarbaporphyrin, opp-dicarbaporphyrin, tricarbaporphyrin and tetracarbaporphyrin. The ground- and excited-state geometries were optimized at the B3LYP/6-31g(d) and CIS/6-31g(d) level, respectively. The optimized ground-state geometry and absorption spectra of porphyrin, calculated by DFT and time-dependent DFT (TDDFT), are comparable with the available experimental values. Based on the optimized excited-state geometries obtained by CIS/6-31g(d) method, the emission properties are calculated using TDDFT method at the B3LYP/6-31g(d) level. The effects of the substitution of nitrogen atoms with carbon atoms at the center positions of porphyrin are discussed. The results indicate that the two-pyrrole nitrogens are important to the chemical and physical properties for porphyrin.