8 resultados para System reliability
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
本文介绍了在ATCA系统中的机箱管理,基于IPMI(Intelligent Platform Management Interface)规格兼容的管理技术,使管理人员能完成远程监控与管理,得知系统的健康状况,运行状态,实现远程配置。并结合系统管理功能,来提高系统的可靠性。
Resumo:
T-Kernel是日本T-Engine组织推出的开源免费的嵌入式实时操作系统(RTOS),以其强实时小体积内核著称。本文针对T-Kernel在Blackfin处理器(BF533)上的移植过程进行了分析,给出了中断管理,任务切换和系统调用入口的实现方法,并进行了稳定性和实时性测试,保证了移植系统的性能。
Resumo:
The seismic data acquisition system is the most important equipment for seismic prospecting. The geophysicists have been paying high attention to the specification of the equipment used in seismic prospecting. Its specification and performance are of great concerned to acquire precisely and accurately seismic data, which show us stratum frame. But, by this time, limited by the technology, most of the Broad-band Seismic Recorder (BSR) for lithosphere research of our country were bought from fremdness which were very costliness and maintained discommodiously. So it is very important to study the seismic data acquisition system.The subject of the thesis is the research of the BSR, several items were included, such as: seismic data digitizer and its condition monitor design.In the first chapter, the author explained the significance of the implement of BSR, expatiated the requirement to the device and introduced the actuality of the BSR in our country.In the second chapter, the collectivity architecture of the BSR system was illustrated. Whereafter, the collectivity target and guideline of the performance of the system design were introduced. The difficulty of the system design and some key technology were analyzed, such as the Electro Magnetic Compatibility (EMC), system reliability technology and so on.In the third chapter, some design details of BSR were introduced. In the recorder, the former analog to digital converter (ADC) was separated from the later data transition module. According to the characteristic of seismic data acquisition system, a set high-resolution 24-bit ADC chip was chosen to the recorder design scheme. As the following part, the noise performance of the seismic data channel was analyzed.In the fourth chapter, the embedded software design of each board and the software design of the workstation were introduced. At the same time the communication protocol of the each module was recommendedAt the last part of this thesis, the advantages and the practicability of the BSR system design were summarized, and the next development items were suggested.
Resumo:
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Resumo:
This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.
Resumo:
Micro-fabrication technology has substantial potential for identifying molecular markers expressed on the surfaces of tissue cells and viruses. It has been found in several conceptual prototypes that cells with such markers are able to be captured by their antibodies immobilized on microchannel substrates and unbound cells are flushed out by a driven flow. The feasibility and reliability of such a microfluidic-based assay, however, remains to be further tested. In the current work, we developed a microfluidic-based system consisting of a microfluidic chip, an image grabbing unit, data acquisition and analysis software, as well as a supporting base. Specific binding of CD59-expressed or BSA-coupled human red blood cells (RBCs) to anti-CD59 or anti-BSA antibody-immobilized chip surfaces was quantified by capture efficiency and by the fraction of bound cells. Impacts of respective flow rate, cell concentration, antibody concentration and site density were tested systematically. The measured data indicated that the assay was robust. The robustness was further confirmed by capture efficiencies measured from an independent ELISA-based cell binding assay. These results demonstrated that the system developed provided a new platform to effectively quantify cellular surface markers effectively, which promoted the potential applications in both biological studies and clinical diagnoses.
Resumo:
Concentrated photovoltaic systems (CPVSs) draw more and more attention because of high photovoltaic conversion efficiency, low consumption of solar cell, and low cost of power generation. However, the fallibility of the tracker in such systems has hindered their practical application for more than twenty years. The tracker is indispensable for a CPVS since only normal-incident sunlight can be focused on the solar cell chips, even a slight deviation of incident light will result in a significant loss of solar radiation, and hence a distinct decrease in electricity output. Generally, the more accurate the tracker is, the more reliable the system is. However, it is not exactly the case for a CPVS reliability, because the more accurate the tracker is, the better environment it demands. A CPVS is usually has to subjected to harsh environmental conditions, such as strong wind, heavy rain or snow, and huge changes of temperature, which leads to the invalidation of the system's high-accuracy tracker. Hence, the reliability of a CPVS cannot be improved only by enhancing the tracker's accuracy. In this paper, a novel compound concentrator, combination of Fresnel lens and photo-funnel, has been adopted in a prototype CPVS. Test results show that the compound concentrator can relax the angle tolerance from one tenth to five degrees of arc at 400 suns, which can help a CPVS endure serious environment and remain its reliability over long period. The CPVS with compound concentrator is attractive for commercial application.
Resumo:
We have developed a new experimental system based on a microfluidic chip to determine severe acute respiratory syndrome coronavirus (SARS-Cov). The system includes a laser-induced fluorescence microfluidic chip analyzer, a glass microchip for both polymerase chain reaction (PCR) and capillary electrophoresis, a chip thermal cycler based on dual Peltier thermoelectric elements, a reverse transcription-polymerase chain reaction (RT-PCR) SARS diagnostic kit, and a DNA electrophoretic sizing kit. The system allows efficient cDNA amplification of SARS-CoV followed by electrophoretic sizing and detection on the same chip. To enhance the reliability of RT-PCR on SARS-CoV detection, duplex PCR was developed on the microchip. The assay was carried out on a home-made microfluidic chip system. The positive and the negative control were cDNA fragments of SARS-CoV and parainfluenza virus, respectively. The test results showed that 17 positive samples were obtained among 18 samples of nasopharyngeal swabs from clinically diagnosed SARS patients. However, 12 positive results from the same 18 samples were obtained by the conventional RT-PCR with agarose gel electrophoresis detection. The SARS virus species can be analyzed with high positive rate and rapidity on the microfluidic chip system.