11 resultados para Synergism
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to < n(e) > R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile. Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current drive even without phasing the ICRH antennae.
Resumo:
Tensile properties of poly (P-hydroxybutyrate)/poly (ethylene oxide) (PHB/PEO) blends were reported in this paper. It was found that the blends of PHB with different molecular-weight PEO exhibited different mechanical properties. The mechanical properties of the blends of PHB and PEO3 (M-w=0.3x10(6)) were very poor. However, the blends of PHB and PEO5 (M-w=5x10(6)) showed compatible in mechanical properties. Excellent synergism was observed not only in tensile stress and tensile elongation but also in modulus. Moreover, the ductility of the blends could be improved further under proper heat-treatment.
Resumo:
The miscibility of blends of cellulose diacetate (CDA) and poly(vinyl pyrrolidone) (PVP) was extensively studied by means of differential thermal analysis and dynamic mechanical thermal analysis, tensile test, measuring viscosity of diluted and concentrated solutions of blends in acetone-ethanol mixture and morphological observations. A single glass transition temperature is observed, which is intermediate between the glass transition temperatures associated with each component and depends on composition. A synergism in mechanical properties of blends was found. The absolute viscosity and the intrinsic viscosity of solutions of blends are much higher than the weight average values of solutions of CDA and PVP. Optically clear and thermodynamically stable films were formed in the composition range of CDA/PVP = 100/0 to 50/50w/w. Fourier transform infrared was used to investigate the nature of CDA-PVP interaction. Hydrogen bonds were formed between hydroxyl groups of CDA and carbonyl groups of PVP. Heats of solutions of CDA/PVP blends and their mechanical mixtures were measured by using a calorimeter. Mixing enthalpy obtained with Hess's law approach was used to quantify interaction parameters of this blending system. It was found that mixing enthalpies and interaction parameters were negative and composition dependent. (C) 1997 Elsevier Science Ltd.
Resumo:
Blends of a poly(ether sulfone) (PES) and a polycarbonate (PC) were prepared by melt-mixing and were studied by tensile tests, differential scanning calorimetry, dynamic mechanical analysis, density measurements and transmission electron microscopy (TEM). The blends were found to be two-phase systems and an interfacial layer was presumed to be formed between two phases, which was verified by TEM. A synergism of elongation at break and tensile modulus was shown in PES/PC blends. The effects of the crosshead speed on the mechanical properties were discussed for blends with different PES/PC weight ratios.
Resumo:
The effects of metal ions and lanthanide complexes on the gel-to-liquid crystal phase transition temperature T-m of dipalmitoylphosphatidylethanolamine liposomes have been studied by differential scanning calorimetry (DSC) method. The results show that the addition of metal ions to the dipalmitoylphosphatidylethanolamine (DPPE) liposomes dispersions increases the main phase transition temperature T-m in the order of monovalent< divalent< trivalent cations. The enhancement of T-m is not large as increasing the lanthanide ions concentration. The enhancement of Pr3+ is larger than that of La3+. Remarkable differences were observed between La-citrate and La-lactate complexes at different pH solutions. At pH 7.0, La-citrate complex has no effect on the T-m, La-lactate complex, however, increases the T-m value, and the increase is larger than that of free lanthanide ions at the same concentration. The decrease of pH of complexes solutions lowers the phase transition temperature. We have preliminarily discussed the mechanism of the enhancements of lanthanide ions and the synergism of lanthanide ion and lactate ligand follow the ion induced dehydration of lipid and the potential effects of ion-lipid interaction.
Resumo:
The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of approximate to 20,000 microbial extracts, 12 hits were identified with broadspectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy.
Resumo:
根据领域中专用短程通信()协议的基础规范,设计出应用于电子收费系统的物理层、数据链路层和应用层相关参数ITSDSRCDSRC选定和设置。力求在电子收费领域相关的装置与设备能遵循指定的规格标准,并增进各系统相互之间的相容性和互连性。
Resumo:
The interaction between drugs and human serum albumin (HSA) was investigated by capillary electrophoresis (CE). It involves stereoselectivity, drug displacement and synergism effects. Under protein-drug binding equilibrium, the unbound concentrations of drug enantiomers were measured by frontal analysis (FA). The stereoselectivity of verapamil (VER) binding to HSA was proved by the different free fractions of two enantiomers. In physiological pH (7.4, ionic strength 0.17 phosphate buffer) when 300 mu M (+/-) VER were equilibrated with 500 mu M HSA, the concentration of unbound S-VER was about 1.7 times its antipode. The binding constants of two enantiomers, KR-VER and KS-VER, were 2670 and 850 M-1, respectively. However, no obvious stereoselective binding of propranolol (PRO) to HSA was observed. Trimethyl-beta-cyclodextrin (45 mM) was used as a chiral selector in pH 2.5 phosphate buffer. Several drug systems were studied by the method. When ibuprofen (IBU) was added into VER-HSA solution. R-VER was partially displaced while S-VER was not displaced at all. A binding synergism effect between bupivacaine (BUP) and verapamil was observed and further study suggested that verapamil and bupivacaine occupy different binding site of HSA (site II and site III, respectively).