4 resultados para Syndrôme respiratoire sévère aïgu

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

离子选择电极在水溶液中的研究和应用,已取得很大进展。但是,在实际工作中人们常遇到一些困难,许多化合物不溶解于水,或不以人们所要求的状态存在,因而不能在水溶液中时行研究和测定。因此,将离子电极技术应用于非水介质,扩展电位法的研究和应用领域,具有重要的意义。由于有机溶剂对离子电极有腐蚀、破坏作用,使目前能用于非水介质电极只有玻璃电极、固体膜电极等少数几种。发展新型的用于非水介质测定的离子电极,已成为非水溶剂电位法研究的首要课题。1986年陈方平受液膜电极工作原理启发,提出了水膜电极,并在低介电常数有机溶剂中响应成功,我们的工作,是对水膜电极作进一步和系统的研究。1. 参比电极 用于非水溶剂电位测定的参比电极已有多种。本文制备的Pt/(I_3~-+I~-)参比电极,在多种有机溶剂中有稳定电位,与Ag/Agu、甘汞电极比较有其独特的优点。实验证明,选择Pt/(I_3~-+I~-)电极作为水膜电极测定的参比电极,能取得满意的结果。2. 测定体系的选择 鉴于介电常数较大的有机溶剂,已有许多作者研究,我们采用低介电常数有机溶剂-磷酸三丁酯作为水膜电极测定的有机溶剂,并以加入支持电解质的方法解决被测体系内阻的问题。我们不选择甲醇、乙醇、丙醇、丁醇、戊醇等介电常数有规律变化的溶剂作为被测溶剂系列,以探讨溶剂性质对水膜电极响应的影响。考虑到一价离子是非水溶剂电位法中研究最多的离子,二价、三价离子研究较少,我们选择二价钴、镍离子和三价钐离子作为非水溶剂测定的研究对象。3. 水膜电极的制备 将水膜支撑材料封接于玻璃管的一端,充入内参比液,待内参比液透过水膜支撑材料,便在电极末端形成水膜。制备水膜电极的关键,在于水膜支撑材料的选择及水膜溶液的确定。水膜支撑材料可直接影响水膜电极响应的斜率。由实验发现,具有均匀微小颗粒结构的陶瓷,较适宜于作为水膜电极的水膜支撑材料。水膜溶液的组成决定了水膜电极的性质和种类。在我们研制的水膜钴、镍、钐电极中,水膜钴电极的水膜组成液是pH=2, 10~(-2)M氯化钴溶液,水膜镍电极的水膜组成液是pH=2, 10~(-2)M氯化镍溶液,水膜钐电极的水膜组成液是1MHCl, 10~(-2)M氯化钐溶液。水膜电极水膜组成液中离子浓度及pH值的改变,可影响水膜电极响应的线性范围和斜率。对不同离子的水膜电极其影响情况不同。我们以水膜钴、镍、钐电极为对象,进行了探讨。4. 影响水膜电极响应的其它因素 水膜电极在有机相中测定,有机溶剂中离子强度大小和水、有机溶剂两相间的液接电势均构成影响电极响应的因素,在一些低价电常数剂中这种影响尤为明显。因此需要加入适当的支持电解质固定被测体系的总离子强度。支持电解质的种类、浓度不同,对电极响应的影响情况也不同。实验表明,高氯酸四丁铵是水膜镍电极在磷酸三丁酯中响应的较为理想的支持电解质。待测有机体系的内阻,是非水电位测定的一个重要问题。由于非水溶剂的介电常数远小于溶液的介电常数,电解质在其中的离解度也小于在水溶液中的离解度,因而有机溶剂体系的内阻比水溶液体系的内阻大得多。我们一方面采用输入阻抗较高的仪器来测定,另一方面对内阻过大的低介电常数溶剂,加入适当的支持电解质,以改善溶液的导电性。5. 有机溶剂性质对水膜电极响应的影响以水膜电极在介电常数及水溶性有规律变化的甲醇、乙醇、丙醇、丁醇、戊醇中的响应,以及水膜电极在磷酸三丁酯-醇混合溶剂中的响应,来初步探讨有机溶剂性质对水膜电极响应的影响。实验结果表明:水膜电极直接在低介电常数有机溶剂中的响应,往往是非能斯特响应,但加入支持电解质后,可改善体系的导电性,使电极响应状况好转。在介电常数较大的有机溶剂中,水膜电极在不加支持电解质的情况下响应仍能得到满意的结果。但是,若介电常数大的有机溶剂具有水溶性,水溶性越高,水膜电极的灵敏度就越低,水溶性越小,水膜电极的灵敏度就越高。与水完全互溶的有机溶剂,不能用水膜电极进行测定。6. 水膜电极的应用 将水膜电极直接用于实际样品的分析测定,尚有一定的困难。但是根据离子在两互不相溶液-液界面上迁移是双向可逆的原则,利用水膜电极的一些研究结果,可以探索和制备新型的液膜和PVC膜离子电极。我们分别制备了液膜和PVC膜稀土电极,其中PVC膜钐离子电极在高浓度硝酸中具有能斯特响应这一结果,打破了稀土电极不能在酸性条件下测定的界限。为稀土电极的研究,闯出了一条新路。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文对不同菌种(酵母菌和运动发酵单胞菌)快速生产燃料乙醇的条件进行了研究,实现了鲜甘薯快速转化为燃料乙醇。全文分为两部分: 第一部分:酵母菌快速生产燃料乙醇的条件研究。通过单因素试验,酵母菌快速生产燃料乙醇的条件为:发酵方式采用边糖化边发酵(SSF),蒸煮温度为85 ℃,料水比2:1(初始糖浓度 210 g/kg),糖化酶用量0.75 AGU/g 鲜甘薯,接种量10%(v/w)。在最优条件下,经过24 h发酵,乙醇浓度可达97.44 g/kg, 发酵效率为92%,发酵强度为4.06 g/kg/h。由于采用了低温蒸煮和SSF,可以大大节约能耗,从而降低乙醇生产的成本。同时,利用摇瓶优化的条件,进行了10 L,100 L,500 L发酵罐的放大试验,由于发酵罐初期可以人为通氧,使菌体能迅速积累,发酵时间缩短2 h,发酵效率在90%以上。 第二部分:运动发酵单胞菌快速生产燃料乙醇条件研究。通过单因素试验和正交试验获得了发酵的最佳参数:初始pH值6.0-7.0,硫酸铵5.0 g/kg,糖化酶量1.6 AUG/kg淀粉,初始糖浓度200 g/kg,接种量12.5%(v/w)。经过21 h发酵,乙醇浓度为95.15 g/kg,发酵效率可达94%。同时对不灭菌发酵也进行了研究,发酵效率可达92%。为鲜甘薯运动发酵单胞菌燃料乙醇的工业化生产打下基础。 对发酵结束后的残糖进行了研究。通过薄层层析和葡萄氧化酶测定证明:无论是酵母菌还是运动发酵单胞菌发酵结束后的发酵液中都不含葡萄糖。经过HPLC进一步分析残糖说明:发酵液中已没有葡萄糖成分;经糖化酶水解后仍没有葡萄糖出现;但经酸水解后又出现了葡萄糖,说明结束后的残糖是一些低聚糖结构。有关残糖的结构需要进一步研究。可以通过开发高效的低聚糖水解酶来降低发酵液的残糖,提高原料的利用率。 A new technology for rapid production fuel ethanol from fresh sweet potato by different microorganisms (Saccharomyces cerevisiae and Zymomonas mobilis) was gained in this research. The paper involved two parts: Part 1: The study on fuel ethanol rapid production from fresh sweet potato by Saccharomyces cerevisiae. The following parameters of Saccharomyces cerevisiae was investigated by a series of experiments: fermentation models, cooking temperature, initial sugar concentration and glucoamylase dosage. The results showed that SSF (simultaneous saccharification and fermentation) not only reduced the fermentation time (from 30 to 24h) but also enhanced the ethanol concentration (from 73.56 to 95.96 g/kg). With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg which the fermentation yield could reach to 92% and ethanol productivity 4.06 g/kg/h from sweet potato enzymatic hydrolysis. Furthermore, the savings in energy by carrying out the cooking (85 ℃) and saccharification (30 ℃) step at low temperature had been realized. The results were also verified in 10 L, 100 L and 500 L fermentor. The fermentation yield was no less than 90%. The fermentation time of fermenter was shorter than Erlenmeyer flask. This may be that the aeration in the early fermentation period is available, which lead to the rapidly commutations of biomass. Part 2: The technology of ethanol rapid production with simultaneous saccharification and fermentation ( SSF ) by Zymomonas mobilis,using fresh sweet potato as raw material was studied. The effects of various factors on the yield of ethanol were investigated by the single factor and the orthogonal experiments. As a result, the optimal technical conditions were obtained from those experiments:initial pH value 6.0-7.0, nitride 5.0 g/kg,(NH4)2SO4, glucoamylase 1.6 AUG/kg starch, inoculums concentration 12.5% (v/w). The Zymomonas mobilis was able to produce ethanol 95.15 g/kg, with 94% of the theoretical yield, from fresh sweet potato after 24 h fermentation. The fermentation efficiency of non-sterilized was also reach to 92%. We also analyzed the final fermentation residual sugars of Saccharomyces cerevisiae and Zymomonas mobilis. When the residual sugars were analyzed by thin-layer chromatogram and glucose oxidase, there was no glucose. The analysis of reducing sugars by HPLC showed that there was no glucose existed in the fermentation liquor. However, the glucose appeared after being hydrolyzed by acid. It is indicated that the residual sugars in the final fermentation liquor were the configuration of oligosaccharide, which was linked by the special glycosidic bonds. It was feasible for reducing residual sugars to develope the enzyme that can degradation the oligosaccharide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文结合我国燃料乙醇发展的方针政策,以酿酒酵母和运动发酵单胞菌为菌种研究其在非粮能源作物木薯中乙醇发酵的情况,为木薯原料更好地应用于生产中提供了理论依据。 酿酒酵母木薯高浓度乙醇发酵的研究。实验采用的木薯干淀粉含量约70-75%。以酿酒酵母为菌种进行高浓度乙醇发酵的工艺条件研究,最佳条件为:木薯干粉碎细度为35目,料水比1:2,α-淀粉酶用量0.09 KNU/g淀粉,蒸煮温度85 ℃,蒸煮时间15 min。采用30 ℃同步糖化发酵工艺,糖化酶用量为3.4 AGU/g淀粉,发酵时间30 h。在10 L发酵罐中,乙醇质量比达127.88 g/kg,发酵效率为88.28%,发酵强度4.263 g/kg/h,100 L中试研究中乙醇浓度为127.75 g/kg,发酵强度4.258 g/kg/h。利用高效液相色谱对发酵液中残糖进行了分析,证明葡萄糖、果糖等单糖已完全被菌体利用,剩余糖为二糖,三糖等不可发酵的低聚糖。 运动发酵单胞菌快速乙醇发酵的研究。对实验室保藏的8株运动发酵单胞菌进行比较,选择发酵速度最快的Zymomonas mobilis232B进行研究。该菌在纯葡萄糖中的最佳发酵条件为:葡萄糖浓度18%,起始pH 6-7,发酵温度30 ℃,发酵时间18 h,乙醇浓度88 g/kg。在以木薯为底物同步糖化快速乙醇发酵中,采用Full Factorial设计和最速上升实验确定了培养基成分中的2个显著性因子及其最适浓度:酵母粉4 g/kg,硫酸铵0.8 g/kg。在最适培养基条件下,对木薯料水比和糖化酶用量进行了优化,得到Z.mobilis232B木薯乙醇发酵最佳料水比1:3,糖化酶浓度4 AGU/g淀粉,乙醇发酵4.915 g/kg/h。利用高效液相色谱对发酵液中残糖进行了分析,剩余糖为二糖,三糖等,但成分较酵母发酵后复杂。 According to the fuel ethanol development plans and policies in our country, the ethanol production from cassava by Saccharomyces cerevisiae and Zymomonas mobilis was studied. It provided theoretical basis for ethanol fermentation by cassava in industry. Part 1 is the study of VHG (very high gravity) ethanol fermentation by Saccharomyces cerevisiae. The content of starch in cassava was 70-75%. Compared with the performances under different experimental conditions, the following optimal conditions for VHG fermentation were obtained: Granule size of dry cassava 35 mashes, hydromodulus of cassava to water at 1:2, α-amylase enzyme dosage 0.09 KNU/g starch, cooking temperature 85 ℃ for 15 min, using the SSF process (simultaneous saccharification and fermentation) and the amount of glucoamylase 3.4 AGU/g starch. Accordingly, the final ethanol concentration was up to 127.88 g/kg; the ethanol yield reached 88.28%, and ethanol productivity was 4.263 g/kg/h after 30 h. When the fermentation scale expanded to 100 L, the final ethanol concentration was 127.75 g/kg, and the ethanol productivity was 4.258 g/kg/h in 30 h. The residual sugar was analyzed by high performance liquid chromatography, and proved that there was no glucose and fructose. The residual reducing sugar was some unfermentable oligosaccharide Part 2 is the study of the rapid ethanol production by Zymomonas mobilis. Compare with other seven stains, Zymomonas mobilis 232B was selected for research. The optimum condition in glucose medium was as follow: glucose concentration 18%, initial pH 6-7, and fermentation temperature 30 ℃. The ethanol concentration was 88g/kg in 18 h. After that, rapid ethanol production from cassava in SSF by Zymomonas mobilis 232B was studied. Through a series of experiments aided by Full Factorial Design and steepest ascent search, the optimal concentration yeast extract and ammonium sulfate were determined: 4 g/kg and 0.8 g/kg, each. Under optimum medium conditions, the optimal hydromodulus of cassava to water and glucoamylase dosages were obtained: hydromodulus of cassava to water at 1:3 and glucoamylase dosages 4 AGU/g starch. The ethanol production reached 4.915 g/kg/h. The residual sugar was analyzed by HPLC, and proved that the residual reducing sugar was some unfermentable oligosaccharide,but the components were more complex than that fermentation by Saccharomyces cerevisiae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以玉米淀粉为原料,N-(2,3-环氧丙基)三甲基氯化铵(GTA)为阳离子醚化剂,在碱催化条件下,制备了高取代度阳离子淀粉,研究了反应条件对产品取代度和结构的影响。结果表明,在n(NaOH)/n(淀粉葡萄糖基AGU)=0.2025,n(GTA)/n(AGU)=4.0,反应温度60℃的条件下反应6h,取代度可达1.0959。用FTIR和13CNMR表征了高取代度阳离子淀粉的结构,X-ray衍射结果表明,阳离子化反应破坏了原淀粉的结晶结构,生成了具有非晶态结构的阳离子淀粉。