18 resultados para Symbolic and Algebraic Manipulation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fishes, the biggest and most diverse community in vertebrates are good experimental models for studies of cell and developmental biology by many favorable characteristics. Nuclear transplantation in fish has been thoroughly studied in China since 1960s. Fish nuclei of embryonic cells from different genera were transplanted into enucleated eggs generating nucleo-cytoplasmic hybrids of adults. Most importantly, nuclei of cultured goldfish kidney cells had been reprogrammed in enucleated eggs to support embryogenesis and ontogenesis of a fertile fish. This was the first case of cloned fish with somatic cells. Based on the technique of microinjection, recombinant MThGH gene has been transferred into fish eggs and the first batch of transgenic fish were produced in 1984. The behavior of foreign gene was characterized and the onset of the foreign gene replication occurred between the blastula to gastrula stages and random integration mainly occurred at later stages of embryogenesis. This eventually led to the transgenic mosaicism. The MThGH-transferred common carp enhanced growth rate by 2-4 times in the founder juveniles and doubled the body weight in the adults. The transgenic common carp were more efficient in utilizing dietary protein than the controls. An "all-fish" gene construct CAgcGH has been made by splicing the common carp beta-actin gene (CA) promoter onto the grass carp growth hormone gene (gcGH) coding sequence. The CAgcGH-transferred Yellow River Carp have also shown significantly fast-growth trait. Combination of techniques of fish cell culture, gene transformation with cultured cells and nuclear transplantation should be able to generate homogeneous strain of valuable transgenic fish to fulfil human requirement in 21(st) century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A marine fish cell line from the snout of red spotted grouper Epinephelus akaara, a protogynous hermaphrodite, was established, characterized, and subcultured with more than 60 passages. The grouper snout cell line (GSC) cells multiplied well in Dulbecco's modified Eagle's medium (DMEM) medium supplemented with 10% fetal bovine serum. The optimal growth temperature was 25 degrees C, and morphologically the cells were fibroblastic. Chromosome analysis revealed that the GSC cell line has a normal diploid karyotype with 2n = 8st + 40t. A virus titration study indicated that the cells were susceptible to turbot Scophthalmus Maximus rhabdovirus (SMRV) (10(8.5) TCID50 ml(-1)), while the viral titer of frog Rana grylio virus 9807 (RGV(9807)) reached 10(3.5) TCID50 ml-1. The infection was confirmed by cytopathic effect (CPE), immunofluorescence, and electron microscopy experiments, which detected the viral particles in the cytoplasm of virus-infected cells, respectively. Further, significant fluorescent signals were observed when the GSC cells were transfected with pEGFP vector DNA, indicating their potential utility for transgenic and genetic manipulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus recoveries from selected inorganic and organic P-containing compounds after ignition with auxiliaries, such as MgSO4, Mg (NO3)(2), MgCl2, Mg (Ac)(2) and CaCl2 were studied. It was found that the phosphorus could not be completely recovered when most P-containing compounds were ignited with MgSO4 at temperature not higher than 500degreesC if the baked residue was extracted with 0.2 mol/L HCl for 30 min at 80degreesC or at room temperature. In contrast, MgCl2, Mg(Ac)(2) and CaCl2, as well as Mg(NO3)(2), could all yield complete P recoveries. We suggest that MgCl2 rather than MgSO4, which is usually used, should be utilized as ashing auxiliary agent in the P extraction by ignition method. Although Mg (NO3)(2) is a highly effective auxiliary agent, yet interference from MgSO4, danger of explosion, toxicity of nitrogen dioxide and more manipulation steps may limit its widespread utilization. It is suggested that if sediment is ignited with MgCl2, the extraction of residue with 0.2 mol/L HCl for 30 min at 80degreesC could give good result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The optical manipulation of electron spins is of great benefit to solid-state quantum information processing. In this letter, we provide a comparative study on the ultrafast optical manipulation of single electron spin in the doped and undoped quantum dots. The study indicates that the experimental breakthrough can be preliminarily made in the undoped quantum dots, because of the relatively less demand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Time-resolved Faraday rotation spectroscopy is currently exploited as a powerful technique to probe spin dynamics in semiconductors. We propose here an all-optical approach to geometrically manipulate electron spin and to detect the geometric phase by this type of extremely sensitive experiment. The global nature of the geometric phase can make the quantum manipulation more stable, which may find interesting applications in quantum devices.