11 resultados para Symbiosis.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Interspecific symbiotic relationships involve a complex network of interactions, and understanding their outcome requires quantification of the costs and benefits to both partners. We experimentally investigated the costs and benefits in the relationship between European bitterling fish (Rhodeus sericeus) and freshwater mussels that are used by R. sericeus for oviposition. This relationship has hitherto been thought mutualistic, on the premise that R. sericeus use mussels as foster parents of their embryos while mussels use R. sericeus as hosts for their larvae. We demonstrate that R. sericeus is a parasite of European mussels, because it (i) avoids the cost of infection by mussel larvae and (ii) imposes a direct cost on mussels. Our experiments also indicate a potential coevolutionary arms race between bitterling fishes and their mussel hosts; the outcome of this relationship may differ between Asia, the centre of distribution of bitterling fishes, and Europe where they have recently invaded.
Resumo:
Hypothesis: In parasites that use hosts for offspring development, adults may base oviposition decisions on a range of host traits related either to host quality or the co-evolutionary relationship between parasite and host. We examined whether host quality or co-evolutionary dynamics drive the use of hosts in the bitterling-mussel relationship. Organisms: Six species of bitterling fish (Acheilognathinae) and eight species of freshwater mussels (Unionidae, Corbiculidae) that are used by bitterling for oviposition. Site of experiments: Experimental tanks in Wuhan, China, at the site of the natural distribution of the studied species. Methods: Three experiments that controlled for host accessibility and interspecific interactions were conducted to identify host preferences among bitterling fishes and their mussel hosts. We started with a broad interspecific comparison. We then tested bitterling behavioural choices, their temporal stability, and mussel host ejection behaviour of the eggs of generalist and specialist bitterling species. Finally, we measured host mussel quality based on respiration rate and used published studies on mussel gill structure to infer mussel suitability as hosts for bitterling eggs. Results: We found significant interspecific differences among bitterling species in their use of mussel hosts. Bitterling species varied in their level of host specificity and identity of preferred hosts. Host preferences were flexible even among apparently specialized species and fishes switched their preferences adaptively when the quality of individuals of preferred host species declined. Mussels varied considerably in their response to oviposition through egg ejections. Host preference by a generalist bitterling species correlated positively with host quality measured as the efficiency of the mussel gills to extract oxygen from inhaled water. Host ability to eject bitterling eggs correlated positively with their relative respiration rate, probably due to a higher velocity of water circulating in the mussel gill chamber.
Resumo:
Symbiosis between Frankia,VA mycorrhizal fungi and Hippophae rhamnoides L.was studied in lab.The characteristic structures-arbuscules of VAM and nodules were confirmed in the root of H.rhamnoides L.,which was inoculated with VAMF and Frankia in pure artificial culture.Evaluated by the stimulation on the growth of the host plant,VAH is a better associated fungi and HR16 is a better Frankia for Hippophae rhamnoides L.
Resumo:
A number of methods are available for those researchers considering the addition of molecular analyses of ectomycorrhizal (EcM) fungi to their research projects and weighing the various approaches they might take. Analyzing natural EcM fungal communities has traditionally been a highly skilled, time-consuming process relying heavily on exacting morphological characterization of EcM root tips. Increasingly powerful molecular methods for analyzing EcM communities make this area of research available to a much wider range of researchers. Ecologists can gain from the body of work characterizing EcM while avoiding the requirement for exceptional expertise by carefully combining elements of traditional methods with the more recent molecular approaches. A cursory morphological analysis can yield a traditional quantification of EcM fungi based on tip numbers, a unit with functional and historical significance. Ectomycorrhizal root DNA extracts may then be analyzed with molecular methods widely used for characterizing microbiota. These range from methods applicable only to the simple mixes resulting from careful morphotyping, to community-oriented methods that identify many types in mixed samples as well as provide an estimate of their relative abundances. Extramatrical hyphae in bulk soil can also be more effectively studied, extending characterization of EcM fungal communities beyond the rhizoplane. The trend toward techniques permitting larger sample sets without prohibitive labor and time requirements will also permit us to more frequently address the issues of spatial and temporal variability and better characterize the roles of EcM fungi at multiple scales.