5 resultados para Study of Geometry

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element simulation of the Berkovich, Vickers, Knoop, and cone indenters was carried out for the indentation of elastic-plastic material. To fix the semiapex angle of the cone, several rules of equivalence were used and examined. Despite the asymmetry and differences in the stress and strain fields, it was established that for the Berkovich and Vickers indenters, the load-displacement relation can closely be simulated by a single cone indenter having a semiapex angle equal to 70.3degrees in accordance with the rule of the volume equivalence. On the other hand, none of the rules is applicable to the Knoop indenter owing to its great asymmetry. The finite element method developed here is also applicable to layered or gradient materials with slight modifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconducting quarter-wave resonators, due to their compactness and their convenient shape for tuning and coupling, are very attractive for low-beta beam acceleration. In this paper, two types of cavities with different geometry have been numerically simulated: the first type with larger capacitive load in the beam line and the second type of lollipop-shape for 100 MHz, beta=0.06 beams; then the relative electromagnetic parameters and geometric sizes have been compared. It is found that the second type, whose structural design is optimized with the conical stem and shaping drift-tube, can support the better accelerating performance. At the end of the paper, some structural deformation effects on frequency shifts and appropriate solutions have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneous electron transfer rate constant (k(s)) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (tau(L)) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k(s) varies inversely with tau(L); k(s), is proportional to D of DMFc. Both D and k(s) of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k(s) of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IR spectrum of 4-methyl-3-penten-2-one is interpreted with the aid of normal coordinate calculations within the Onsager self-consistent reaction field (SCRF) model, using a density functional theory (DFT) method at the Becke3LYP/6-31G* level. The solvent effects on the geometry, energy, dipole moment, and vibrational frequencies of 4-methyl-3-penten-2-one in the solution and in the liquid phase are calculated using the Onsager SCRF model. The calculated vibrational frequencies in the liquid-phase are in good agreement with the experimental values. The solvent reaction field has generally weak influence. For the two main bands of C=C and C=O mixed vibrational modes, small frequency shifts (5-6 cm(-1)), but relatively large changes in IR intensities (up to 101 km mol(-1) in the liquid phase) are found. (C) 1999 Elsevier Science BV. All rights reserved.