175 resultados para Structural phase transition

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distorted layered perovskite compound BaTb2Mn2O7 was synthesized by the solid state reaction in pure argon. There is a structural phase transition in the BaTb2Mn2O7 compound. The phase transition was characterized by the DSC and high temperature Xray diffraction. The heat capacity of BaTb2Mn2O7 was calculated. The thermal anomaly corresponding to the phase transition was observed at about 740K. The lattice parameters were calculated by the CELL program for BaTb2Mn2O7, It has Tb-type orthorhombic symmetry with a = 0.3908 nm, b = 0.3866 nm, c = 2.0163 nm, and space group Immm at room temperature. With the increase of temperature, the lattice parameters gradually increase until 673K. From 723K to 973K, the compound translates to tetragonal with a = 0.39078 nm, c = 2.0277 nm and S.G. I4/mmm. This result is fairly in accordance with that of heat capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-solid phase transitions in the perovskite-type layer compound [n- C16H33NH3]2CoCl4 have been studied by infrared spectroscopy. A new phase transition at 340 K was found by comparison with differential scanning calorimetry results. A temperature dependence study of the infrared spectra provides evidence of the occurrence of structural phase transitions related to the dynamics of the alkylammonium ions and hydrogen bonds. The main transition at 374 K corresponds to the conformational order-disorder change in the chain, which probably couples with reorientational motions of the NH3 polar heads. GTG or GTG' defects appear in the high temperature disordered phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-step phase transition model, displacive to order-disorder, is proposed. The driving forces for these two transitions are fundamentally different. The displacive phase transition is one type of the structural phase transitions. We clearly define the structural phase transition as the symmetry broking of the unit cell and the electric dipole starts to form in the unit cell. Then the dipole-dipole interaction takes place as soon as the dipoles in unit cells are formed. We believe that the dipole-dipole interaction may cause an order-disorder phase transition following the displacive phase transition. Both structural and order-disorder phase transition can be first-order or second-order or in between. We found that the structural transition temperatures can be lower or equal or higher than the order-disorder transition temperature. The para-ferroelectric phase transition is the combination of the displacive and order-disorder phase transitions. It generates a variety of transition configurations along with confusions. In this paper, we discuss all these configurations using our displacive to order-disorder two-step phase transition model and clarified all the confusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of electrical conductivity for excimer laser irradiated polyimide films in the vicinity of the critical number of laser shots was described by three-dimensional percolative phase transition model. It is: found that electrical conductivity changed more rapidly than that predicted by the percolation model. Thus, the change in microstructure with increasing number of laser shots was analyzed by FT-IR Raman spectrometry and laser desorption time-of-flight mass spectrometry. It is demonstrated that not only the number but also the average size of graphite particles on the irradiated polyimide film surfaces increased with increasing number of laser shots. These results were helpful to better understand the critical change in electrical conductivity on the irradiated polyimide film surfaces. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ energy dispersive x-ray diffraction on ZnS nanocrystalline was carried out under high pressure by using a diamond anvil cell. Phase transition of wurtzite of 10 nm ZnS to rocksalt occurred at 16.0 GPa, which was higher than that of the bulk materials. The structures of ZnS nanocrystalline at different pressures were built by using materials studio and the bulk modulus, and the pressure derivative of ZnS nanocrystalline were derived by fitting the equation of Birch-Murnaghan. The resulting modulus was higher than that of the corresponding bulk material, which indicates that the nanomaterial has higher hardness than its bulk materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-solid phase transition of [n-C11H23NH3]2ZnCl4 Complex have been studied by Raman spectroscopy. The results show that the occurence of the structural phase transitions mainly related to the change of packing structure and molecular conformation o

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared spectroscopy was used to study the structural phase, transitions of laurylammonium chloride in the temperature range from 290 to 365K. It was shown that there is a solid-solid phase transition at 339 K with a pre-transition at 327 K. The infrared spectra indicated that virgin crystals at room temperature form a well-ordered phase with all-trans hydrocarbon chains, and the lengths of N-H...Cl hydrogen bonds are different. The spectra suggested that the gauche conformers begin to appear at temperature above 327 K. The spectra at high temperature over 339 K demonstrated that the interaction between the chains decreases, the partial ''melting'' of the chains is obvious, and the hydrogen bonds (N-H...Cl) have the same lengths. The main transition and pre-transition are mainly assigned to the intramolecular and intermolecular order-disorder changes, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Loschmidt echo (LE) of a coupled system consisting of a central spin and its surrounding environment described by a general XY spin-chain model. The quantum dynamics of the LE is shown to be remarkably influenced by the quantum criticality of the spin chain. In particular, the decaying behavior of the LE is found to be controlled by the anisotropy parameter of the spin chain. Furthermore, we show that due to the coupling to the spin chain, the ground-state Berry phase for the central spin becomes nonanalytical and its derivative with respect to the magnetic parameter lambda in spin chain diverges along the critical line lambda=1, which suggests an alternative measurement of the quantum criticality of the spin chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in situ energy dispersive x-ray diffraction study on nanocrystalline ZnS was carried out under high pressure up to 30.8 GPa by using a diamond anvil cell. The phase transition from the wurtzite to the zinc-blende structure occurred at 11.5 GPa, and another obvious transition to a new phase with rock-salt structure also appeared at 16.0 GPa-which was higher than the value for the bulk material. The bulk modulus and the pressure derivative of nanocrystalline ZnS were derived by fitting the Birch-Murnaghan equation. The resulting modulus was higher than that of the corresponding bulk material, indicating that the nanomaterial has higher hardness than the bulk material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ energy dispersive X-ray diffraction measurements on nanocrystalline zinc sulfide have been performed by using diamond anvil cell with synchrotron radiation. There is a phase transition which the ultimate structure is rocksalt when the pressure is up to 16.0GPa. Comparing the structure of body materials, the pressure of the phase transition of nano zinc sulfide is high. We fit the: Birch-Murnaghan equation of state and obtained its ambient pressure bulk modulus and its pressure derivative. The bulk modulus of nanocrystalline zinc sulfide is higher than that of body materials, it indicate that the rigidity of nanocrystalline zinc sulfide is high.