15 resultados para Strongly
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.
Resumo:
We have investigated ultraviolet (UV) photorefractive effect of lithium niobate doubly doped with Ce and Cu. It is found the diffraction efficiency shows oscillating behavior Under UV-1ight-recording. A model in which electrons and holes can be excited from impurity centers in the UV region is proposed to study the oscillatory behavior of the diffraction efficiency. Oil the basis of the material equations and the coupled-wave equations, we found that the oscillatory behavior is due to the oscillation of the relative spatial phase shift Phi. And the electron-hole competition may cause the oscillation of the relative spatial phase shift. A switch point from electron grating to hole grating is chosen to realize nonvolatile readout by a red light with high sensitivity (0.4 cm/J). (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Chimeric RNAs have been reported in varieties of organisms and are conventionally thought to be produced by trans-splicing of two or more distinct transcripts. Here, we conducted a large-scale search for chimeric RNAs in the budding yeast, fruit fly, mous
Resumo:
Strongly reducing organic substances (SROS) and iron oxides exist widely in soils and sediments and have been implicated in many soil and sediment processes. In the present work, the sorptive interaction between goethite and SROS derived from anaerobic decomposition of green manures was investigated by differential pulse voltammetry (DPV). Both green manures, Astragaltus sinicus (Astragalus) and Vicia varia (Vicia) were chosen to be anaerobically decomposed by the mixed microorganisms isolated from paddy soils for 30 d to prepare different SROS. Goethite used in experiments was synthesized in laboratory. The anaerobic incubation solutions from green manures at different incubation time were arranged to react with goethite, in which SROS concentration and Fe(II) species were analyzed. The anaerobic decomposition of Astragalus generally produced SROS more in amount but weaker in reducibility than that of Vicia in the same incubation time. The available SROS from Astragalus that could interact with goethite was 0.69 +/- 0.04, 0.84 +/- 0.04 and 1.09 +/- 0.03 cmol kg(-1) as incubated for 10, 15 and 30 d, respectively, for Vicia, it was 0.12 +/- 0.03, 0.46 +/- 0.02 and 0.70 +/- 0.02 cmol kg(-1). One of the fates of SROS as they interacted with goethite was oxidation. The amounts of oxidizable SROS from Astragalus decreased over increasing incubation time from 0.51 +/- 0.05 cmol kg(-1) at day 10 to 0.39 +/- 0.04 cmol kg(-1) at day 30, but for Vicia, it increased with the highest reaching to 0.58 +/- 0.04 cmol kg(-1) at day 30. Another fate of these substances was sorption by goethite. The SROS from Astragalus were sorbed more readily than those from Vicia, and closely depended upon the incubation time, whereas for those from Vicia, the corresponding values were remarkably less and apparently unchangeable with incubation time. The extent of goethite dissolution induced by the anaerobic solution from Vicia was greater than that from Astragalus, showing its higher reactivity. (c) 2008 Published by Elsevier Ltd.
Resumo:
Strongly vertically coupled InAs/GaAs quantum dots (QDs) with modulation doping are investigated, and polarization dependence of two-color absorptions was observed. Analysis of photoluminescence (PL) and absorption spectra shows that s-polarized absorptions at. 10.0 and 13.4 mu m, stem from the first excited state E-1 and the second excited state E-2 in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively, whereas p-polarized absorptions at 10.0 and 8.2 mu m stem from the first excited state E-1 and the ground E-g in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively. These measurements illustrate that transitions from excited states are more sensitive to normal incidence, which are very important in designing QD infrared detector. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have studied the current-voltage properties of a double quantum dot (DQD) connected by leads in arrangements that vary from series to symmetrical parallel configurations, in the presence of strong intradot Coulomb interaction. The influences of the connecting configurations and the difference between dot levels on the magnitude and symmetry of the total current are examined. We find that the connecting configurations of the dots can determine the number of the current paths and in turn determine the magnitude of the current, while the coupling strengths between the dots and the leads together with the difference of dot levels determine the current-voltage symmetry. The negative differential conductance observed in serial DQD can be explained in terms of the reduction of the current paths. (c) 2005 American Institute of Physics.
Resumo:
A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.
Resumo:
Motivated by recent spectroscopy data from fission experiments, we apply the projected shell model to study systematically the structure of strongly deformed, neutron-rich, even-even Nd and Sm isotopes with neutron number from 94 to 100. We perform calculations for rotational bands up to spin I = 20 and analyze the band structure of low-lying states with quasiparticle excitations, with emphasis given to rotational bands based on various negative-parity two-quasiparticle (2-qp) isomers. Experimentally known isomers in these isotopes are described well. The calculations further predict proton 2-qp bands based on a 5(-) and a 7(-) isomer and neutron 2-qp bands based on a 4(-) and an 8(-) isomer. The properties for the yrast line are discussed, and quantities to test the predictions are suggested for future experiment.
Resumo:
N-Methylimidazolium functionalized strongly basic anion exchange resins in the Cl- form (RCI) and SO46- form (R2SO4) were synthesized and employed for adsorption of Cr(VI) from aqueous solution. FT-IR and elementary analysis proved the structures of anion exchange resins and the content of functional groups. The gel-type strongly basic anion exchange resins had high thermal stability according to TGA and good chemical stability under the experimental conditions. The adsorption behaviors of Cr(VI) on RCI and R2SO4 were studied using the batch technique. It was shown that adsorption equilibrium was reached rapidly within 60 min. The adsorption data for RCI and R2SO4 were consistent with the Langmuir isotherm equation.
Resumo:
An order-order transition (OOT) in the sequence of a hexagonally arranged core-shell cylinder to a double-hexagonally arranged dot in polystyrene-block-poly(butadiene)-block-poly(2-vinylpyridine) (SBV) triblock copolymer thin films is reported to be induced upon exposure to a solvent vapor that: is strongly selective for the two end blocks. These two kinds of hexagonally arranged structures could form when the film thickness is 44, 3.23, and 223 nm. When the film thickness is decreased to 13 nm, the ordered structure is absent. The sizes of the cylinder structures formed with the same annealing time in films of different thickness are compared to address the effects of film thickness on the phase structure. The mechanism is analyzed from the total surface area of the blocks and the effective interaction parameter in the solvent vapor.
Resumo:
In this paper, long interfacial waves of finite amplitude in uniform basic flows are considered with the assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the velocities at arbitrary distances from the still water level as the velocity variables instead of the commonly used depth-averaged velocities. This significantly improves the dispersion properties and makes them applicable to a wider range of water depths. Since its derivation requires no assumption on wave amplitude, the model thus can be used to describe waves with arbitrary amplitude.