23 resultados para Stochastic frontier
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Understanding relationship between environmental protection and economic development is crucial to form practical environmental policy. At micro level, implementation of environmental regulations often causes production mills adjustment of technology which might leads to change of productive efficiency and cost, which, in turn, determine effort level of mills and even local government in pollution control. Using a stochastic frontier production model and a set of survey data on 126 paper mills from six provinces of China, we measure the technical efficiency changes and analyze the determinants of efficiency. in particular, we examine impact of environmental policy on paper mills' efficiency, using an indicator of environmental policy-the levy ratio of COD. We also estimate a simultaneous-equation model in which the levy rate and emission are jointly determined. The results indicate that there have been efficiency improvements during 1999-2003, when enforcement of environmental regulations have been tightened. The impacts, nevertheless, are different for different types of mills. We also find the levy ratio, which is influenced by both the local social and economic conditions and the characters of paper mills, such as scale, has strong impact on the abatement of the pollutant-COD. Additionally, paper mills' technical efficiency has positive effect on the reduction of the emission intensity of the pollutant-COD. These results lead a set of implications pertinent to policy improvement.
Resumo:
Stochastic characteristics prevail in the process of short fatigue crack progression. This paper presents a method taking into account the balance of crack number density to describe the stochastic behaviour of short crack collective evolution. The results from the simulation illustrate the stochastic development of short cracks. The experiments on two types of steels show the random distribution for collective short cracks with the number of cracks and the maximum crack length as a function of different locations on specimen surface. The experiments also give the variation of total number of short cracks with fatigue cycles. The test results are consistent with numerical simulations.
Resumo:
This paper first presents a stochastic structural model to describe the random geometrical features of rock and soil aggregates. The stochastic structural model uses mixture ratio, rock size and rock shape to construct the microstructures of aggregates,and introduces two types of structural elements (block element and jointed element) and three types of material elements (rock element, soil element, and weaker jointed element)for this microstructure. Then, continuum-based discrete element method is used to study the deformation and failure mechanism of rock and soil aggregate through a series of loading tests. It is found that the stress-strain curve of rock and soil aggregates is nonlinear, and the failure is usually initialized from weaker jointed elements. Finally, some factors such as mixture ratio, rock size and rock shape are studied in detail. The numerical results are in good agreement with in situ test. Therefore, current model is effective for simulating the mechanical behaviors of rock and soil aggregates.
Resumo:
A newly developed numerical code, MFPA(2D) (Material Failure Process Analysis), is applied to study the influence of stochastic mesoscopic structure on macroscopic mechanical behavior of rock-like materials. A set of uniaxial compression tests has been numerically studied with numerical specimens containing pre-existing crack-like flaw. The numerical results reveal the influence of random mesoscopic structure on failure process of brittle material, which indicates that the variation of failure mode is strongly sensitive to the local disorder feature of the specimen. And the patterns of the crack evolution in the specimens are very different from each other due to the random mesoscopic structure in material. The results give a good explanation for various kinds of fracture modes and peak strength variation observed in laboratory studies with specimens made from the same rock block being statistically homogenous in macro scale. In addition, the evolution of crack is more complicated in heterogeneous cases than in homogeneous cases.
Resumo:
A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.
Resumo:
In this paper, the closed form of solution to the stochastic differential equation for a fatigue crack evolution system is derived. and the relationship between metal fatigue damage and crack stochastic behaviour is investigated. It is found that the damage extent of metals is independent of crack stochastic behaviour ii the stochastic deviation of the crack growth rate is directly proportional to its mean value. The evolution of stochastic deviation of metal fatigue damage in the stage close to the transition point between short and long crack regimes is also discussed.
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.
Resumo:
The effects of stochastic extension on the statistical evolution of the ideal microcrack system are discussed. First, a general theoretical formulation and an expression for the transition probability of extension process are presented, then the features of evolution in stochastic model are demonstrated by several numerical results and compared with that in deterministic model.
Resumo:
It is shown that stochastic electromagnetic beams may have different degrees of polarization on propagation, even though they have the same coherence properties in the source plane. This fact is due to a possible difference in the anisotropy of the field in the source plane. The result is illustrated by some examples.
Resumo:
It is extremely difficult to explore mRNA folding structure by biological experiments. In this report, we use stochastic sampling and folding simulation to test the existence of the stable secondary structural units of-mRNA, look for the folding units, and explore the probabilistic stabilization of the units. Using this method, We made simulations for all possible local optimum secondary structures of a single strand mRNA within a certain range, and searched for the common parts of the secondary structures. The consensus secondary structure units (CSSUs) extracted from the above method are mainly hairpins, with a few single strands. These CSSUs suggest that the mRNA folding units could be relatively stable and could perform specific biological function. The significance of these observations for the mRNA folding problem in general is also discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Stochastic resonance (SR) induced by the signal modulation is investigated, by introducing the signal-modulated gain into a single-mode laser system. Using the linear approximation method, we detailedly calculate the signal-to-noise ratio (SNR) of a gain-noise model of the single-mode laser, taking the cross-correlation between the quantum noise and pump noise into account. We find that, SR appears in the dependence of the SNR on the intensities of the quantum and the pump noises when the correlation coefficient between both the noises is negative; moreover, when the cross-correlation between the two noises is strongly negative, SR exhibits a resonance and a suppression versus the gain coefficient, meanwhile, the single-peaked SR and multi-peaked SR occur in the behaviors of the SNR as functions of the loss coefficient and the deterministic steady-state intensity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The quantum well (QW) semiconductor lasers have become main optical sources for optical fibre communication systems because of their higher modulation speed, broader modulation bandwidth and better temperature characteristics. In order to improve the quality of direct-modulation by means of the stochastic resonance (SR) mechanism in QW semiconductor lasers, we investigate the behaviour of the SR in direct-modulated QW semiconductor laser systems. Considering the cross-correlated carrier noise and photon noise, we calculate the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated laser system by using the linear approximation method. The results indicate that the SR always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity.
Resumo:
An analytic closed form for the second- order or fourth- order Markovian stochastic correlation of attosecond sum- frequency polarization beat ( ASPB) can be obtained in the extremely Doppler- broadened limit. The homodyne detected ASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light. fields with arbitrary bandwidth. The physical explanation for this is that the Gaussian- amplitude. field undergoes stronger intensity. fluctuations than a chaotic. field. On the other hand, the intensity ( amplitude). fluctuations of the Gaussian- amplitude. field or the chaotic. field are always much larger than the pure phase. fluctuations of the phase-diffusion field. The field correlation has weakly influence on the ASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the ASPB signal shows resonant- nonresonant cross correlation, and the sensitivities of ASPB signal to three Markovian stochastic models increase as time delay is increased. A Doppler- free precision in the measurement of the energy- level sum can be achieved with an arbitrary bandwidth. The advantage of ASPB is that the ultrafast modulation period 900as can still be improved, because the energy- level interval between ground state and excited state can be widely separated.