9 resultados para Stochastic Process
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
为了确定装配系统中的缓冲区容量,在建立缓冲区状态数学模型的基础上,根据随机过程的原理,提出了缓冲区被充满概率和缓冲区容量之间的函数关系。以缓冲区被充满概率最小化为目标,确定合理的缓冲区容量。最后给出一种递进算法,通过回归方程计算缓冲区对装配工位生产率的影响,逐步求出由多个工位组成的整个装配系统各个工位之间的缓冲区容量。
Resumo:
Stochastic characteristics prevail in the process of short fatigue crack progression. This paper presents a method taking into account the balance of crack number density to describe the stochastic behaviour of short crack collective evolution. The results from the simulation illustrate the stochastic development of short cracks. The experiments on two types of steels show the random distribution for collective short cracks with the number of cracks and the maximum crack length as a function of different locations on specimen surface. The experiments also give the variation of total number of short cracks with fatigue cycles. The test results are consistent with numerical simulations.
Resumo:
A newly developed numerical code, MFPA(2D) (Material Failure Process Analysis), is applied to study the influence of stochastic mesoscopic structure on macroscopic mechanical behavior of rock-like materials. A set of uniaxial compression tests has been numerically studied with numerical specimens containing pre-existing crack-like flaw. The numerical results reveal the influence of random mesoscopic structure on failure process of brittle material, which indicates that the variation of failure mode is strongly sensitive to the local disorder feature of the specimen. And the patterns of the crack evolution in the specimens are very different from each other due to the random mesoscopic structure in material. The results give a good explanation for various kinds of fracture modes and peak strength variation observed in laboratory studies with specimens made from the same rock block being statistically homogenous in macro scale. In addition, the evolution of crack is more complicated in heterogeneous cases than in homogeneous cases.
Resumo:
A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.
Resumo:
The effects of stochastic extension on the statistical evolution of the ideal microcrack system are discussed. First, a general theoretical formulation and an expression for the transition probability of extension process are presented, then the features of evolution in stochastic model are demonstrated by several numerical results and compared with that in deterministic model.
Resumo:
Based on the phase-conjugation polarization interference between two two-photon processes, we theoretically investigated the attosecond scale asymmetry sum-frequency polarization beat in four-level system (FASPB). The field correlation has weak influence on the FASPB signal when the laser has narrow bandwidth. Conversely, when the laser has broadband linewidth, the FASPB signal shows resonance-nonresonance cross correlation. The two-photon signal exhibits hybrid radiation-matter detuning terahertz; damping oscillation, i.e., when the laser frequency is off resonance from the two-photon transition, the signal exhibits damping oscillation and the profile of the two-photon self-correlation signal also exhibits zero time-delay asymmetry of the maxima. We have also investigated the asymmetry of attosecond polarization beat caused by the shift of the two-photon self-correlation zero time-delay phenomenon, in which the maxima of the two two-photon signals are shifted from zero time-delay point to opposite directions. As an attosecond ultrafast modulation process, FASPB can be intrinsically extended to any level-summation systems of two dipolar forbidden excited states.
Resumo:
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free-falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of I m x I m, the expected number of received free-failing raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re-detachment amount. The re-detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free-falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re-detachment amount were small parts of the total splash amount. Their proportions were 0.15% and 2.6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil-splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright (c) 2007 John Wiley & Sons, Ltd.