118 resultados para Started Circular-Cylinder

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, processes in the early stages of vortex motion and the development of flow structure behind an impulsively-started circular cylinder at high Reynolds number are investigated by combining the discrete vortex model with boundary layer theory, considering the separation of incoming flow boundary layer and rear shear layer in the recirculating flow region. The development of flow structure and vortex motion, particularly the formation and development of secondary vortex and a pair of secondary vortices and their effect on the flow field are calculated. The results clearly show that the flow structure and vortices motion went through a series of complicated processes before the symmetric main vortices change into asymmetric: development of main vortices induces secondary vortices; growth of the secondary vortices causes the main vortex sheets to break off and causes the symmetric main vortices to become “free” vortices, while a pair of secondary vortices is formed; then the vortex sheets, after breaking off, gradually extend downstream and the structure of a pair of secondary vortices becomes relaxed. These features of vortex motion look very much like the observed features in some available flow field visualizations. The action of the secondary vortices causes the main vortex sheets to break off and converts the main vortices into free vortices. This should be the immediate cause leading to the instability of the motion of the symmetric main vortices. The flow field structure such as the separation position of boundary layer and rear shear layer, the unsteady pressure distributions and the drag coefficient are calculated. Comparison with other results or experiments is also made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematically numerical study of the sinusoidally oscillating viscous flow around a circular cylinder was performed to investigate vortical instability by solving the three-dimensional incompressible Navier-Stokes equations. The transition from two- to three-dimensional flow structures along the axial direction due to the vortical instability appears, and the three-dimensional structures lie alternatively on the two sides of the cylinder. Numerical study has been taken for the Keulegan-Carpenter( KC) numbers from 1 to 3.2 and frequency parameters from 100 to 600. The force behaviors are also studied by solving the Morison equation. Calculated results agree well with experimental data and theoretical prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 x 10(4) to 1.0 x 10(5). The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, equations calculating lift force of a rigid circular cyclinder at lock-in uniform flow are deduced in detail. Besides, equations calculating the lift force on a long flexible circular cyclinder at lock-in are deduced based on mode analysis of a multi-degree freedom system. The simplified forms of these equations are also given. Furthermore, an approximate method to predict the forces and response of rigid circular cyclinders and long flexible circular cyclinders at lock-in is introduced in the case of low mass-damping ratio. A method to eliminate one deficiency of these equations is introduced. Comparison with experimental results show the effectiveness of this approximate method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8 x 10(3) to 1.0 x 10(5), with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2 similar to 3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5 similar to 6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The features of the wake behind a uniform circular cylinder at Re = 200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations by solving 3-D incompressible Navier-Stokes equations using mixed spectral-spectral-element method. The high-order splitting algorithm based on the mixed stiffly stable scheme is employed in the time discretization. Due to the nonlinear evolution of the secondary instability of the wake, the spanwise modes with different wavelengths emerge. The spanwise characteristic length determines the transition features and global properties of the wake. The existence of the spanwise phase difference of the primary vortices shedding is confirmed by Fourier analysis of the time series of the spanwise vorticity and attributed. to the dominant spanwise mode. The spatial energy distributions of various modes and the velocity profiles in the near wake are obtained. The numerical results indicate that the near wake is in 3-D quasi-periodic laminar state with transitional behaviors at this supercritical Reynolds number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, analyzed are the variation of added mass for a circular cylinder in the lock-in ( synchronization) range of vortex-induced vibration (VIV) and the relationship between added mass and natural frequency. A theoretical minimum value of the added mass coefficient for a circular cylinder at lock-in is given. Developed are semi-empirical formulas for the added mass of a circular cylinder at lock-in as a function of flow speed and mass ratio. A comparison between experiments and numerical simulations shows that the semi-empirical formulas describing the variation of the added mass for a circular cylinder at lock-in are better than the ideal added mass. In addition, computation models such as the wake oscillator model using the present formulas can predict the amplitude response of a circular cylinder at lock-in more accurately than those using the ideal added mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow fields around a rotating circular cylinder in a uniform stream are computed using a low dimensional Galerkin method. Results show that the formation of a Fopple vortex pair behind a stationary circular cylinder is caused by the structural instability in the vicinity of the saddle located at the rear of the cylinder. For rotating cylinder a bifurcation diagram with the consideration of two parameters, Reynolds number Re and rotation parameter a, is built by a kinematic analysis of the steady flow fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decomposition hybrid numerical method. Based on high resolution power spectral analyses for velocity new results on the Reynolds-number dependence of the transition wave frequency, i.e. f(t)/f(s) similar to Re-0.87 are obtained. The new predictions are in good agreement with the experimental results of Wei and Smith but different from Braza's prediction and some early experimental results f(t)/f(s) similar to Re-0.5 given by Bloor et nl. The multi-interactions between two kinds of vortex are clearly visualized numerically. The strong nonlinear interactions between the two independent frequencies (f(t), f(s)) leading to spectra broadening to form the coupling mf(s) +/- nf(t) are predicted and analyzed numerically, and the characteristics of the transition are described. Longitudinal variations of the transition wave and its coupling are reported. Detailed mechanism of the flow transition in the near wake before occurrence of the three-dimensional evolution is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-dimensional Galerkin method, initiated by Noack and Eckelmann [Physica D 56, 151 (1992)], for the prediction of the flow field around a stationary two-dimensional circular cylinder in a uniform stream at low Reynolds number is generalized to the case of a rotating and translating cylinder. The Hopf bifurcation describing the transition from steady to time-periodic solution is investigated. A curve indicating the transitional boundary is given in the two-dimensional parameter plane of Reynolds number Re and rotating parameter alpha. Our results show that rotation may delay the onset of vortex street and decrease the vortex-shedding frequency. (C) 1996 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator Model results. Good agreement with experimental results is found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.