8 resultados para Spinal cord injuries

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. In periphery, they contribute to sensory transmission, including that of nociception and pain. Here we characterized ASIC-like currents in dorsal horn neurons of the rat spinal cord and their functional modulation in pathological conditions. Reverse transcriptase-nested PCR and Western blotting showed that three ASIC isoforms, ASIC1a, ASIC2a, and ASIC2b, are expressed at a high level in dorsal horn neurons. Electrophysiological and pharmacological properties of the proton-gated currents suggest that homomeric ASIC1a and/or heteromeric ASIC1a + 2b channels are responsible for the proton-induced currents in the majority of dorsal horn neurons. Acidification-induced action potentials in these neurons were compatible in a pH-dependent manner with the pH dependence of ASIC-like current. Furthermore, peripheral complete Freund's adjuvant-induced inflammation resulted in increased expression of both ASIC1a and ASIC2a in dorsal horn. These results support the idea that the ASICs of dorsal horn neurons participate in central sensory transmission/modulation under physiological conditions and may play important roles in inflammation-related persistent pain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The BRUNOL/CELF family of RNA-binding proteins plays important roles in post-transcriptional regulation and has been implicated in several developmental processes. In this study, we describe the cloning and expression patterns of five Brunol genes in Xenopus laevis. Among them, only Brunol2 is maternally expressed and the zygotic expression of the other four Brunol genes starts at different developmental stages. During Xenopus development, Brunol1, 4-5 are exclusively expressed in the nervous system including domains in the brain, spinal cord, optic and otic vesicles. Brunol2 and 3 are expressed in both the somatic mesoderm and the nervous system. Brunol2 is also extensively expressed in the lens. In transfected Hela cells, BRUNOL1, 2 and 3 proteins are localized in both the cytoplasm and the nucleus, while BRUNOL4 and 5 are only present in the cytoplasm, indicating their different functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 目的 探讨人胚神经干细胞( hNSC) 移植治疗脊髓损伤(SCI) 的可行性。方法 分 离、培养和鉴定hNSC;用5 溴22 脱氧尿苷嘧啶(BrdU) 标记hNSC ,并将其移植到14 只T10 半横断 的Wistar 大鼠损伤脊髓内(另外14 只T10 半横断损伤的大鼠作为对照组,仅损伤脊髓内注射 DMEM/ F12 培养液) ,用BrdU 的FITC 免疫荧光染色检测移植细胞的存活和迁徙,用NF2200 、 GFAP 免疫组织化学鉴定移植细胞的分化,BBB 评分评定大鼠功能恢复情况。结果 (1) 获得了大 量的hNSC; (2) 用免疫组织化学可以检测到移植的hNSC 能在体内长时间存活(达2 个月) 并向远 处迁徙,并分化为神经元和胶质细胞; (3) 检测到实验组大鼠BBB 得分明显高于对照组大鼠( P < 0. 01) ,在SCI 后第10 周时实验组和对照组BBB 得分最大差距达到2. 1分。结论 hNSC 移植能促 进SCI 大鼠后肢功能恢复,它是SCI 移植治疗较有价值的细胞资源。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many ionotropic receptors are modulated by extracellular H+. So far, few studies have directly addressed the role of such modulation at synapses. In the present study, we investigated the effects of changes in extracellular pH on glycinergic miniature inhibitory postsynaptic currents (mIPSCs) as well as glycine-evoked currents (I-Gly) in mechanically dissociated spinal neurons with native synaptic boutons preserved. H+ modulated both the mIPSCs and I-Gly, biphasically, although it activated an amiloride-sensitive inward current by itself. Decreasing extracellular pH reversibly inhibited the amplitude of the mIPSCs and I-Gly, while increasing external pH reversibly potentiated these parameters. Blockade of acid-sensing ion channels (ASICs) with amiloride, the selective antagonist of ASICs, or decreasing intracellular pH did not alter the modulatory effect of H+ on either mIPSCs or I-Gly, H+ shifted the EC50 of the glycine concentration-response curve from 49.3 +/- 5.7 muM at external pH 7.4 to 131.5 +/- 8.1 muM at pH 5.5, without altering the Cl- selectivity of the glycine receptor (GlyR), the Hill coefficient and the maximal I-Gly, suggesting a competitive inhibition of I-Gly by H+. Both Zn2+ and H+ inhibited I-Gly. However, H+ induced no further inhibition of I-Gly in the presence of a saturating concentration of Zn2+. In addition, H+ significantly affected the kinetics of glycinergic mIPSCs and I-Gly. It is proposed that H+ and/or Zn2+ compete with glycine binding and inhibit the amplitude of glycinergic mIPSCs and I-Gly. Moreover, binding of H+ induces a global conformational change in GlyR, which closes the GlyR Cl- channel and results in the acceleration of the seeming desensitization of IGly as well as speeding up the decay time constant of glycinergic mIPSCs. However, the deprotonation rate is faster than the unbinding rate of glycine from the GlyR, leading to reactivation of the undesensitized GlyR after washout of agonist and the appearance of a rebound I-Gly. H+ also modulated the glycine cotransmitter, GABA-activated current (I-GABA). Taken together, the results support a 'conformational coupling' model for H+ modulation of the GlyR and suggest that W may act as a novel modulator for inhibitory neurotransmission in the mammalian spinal cord.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary, Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos, Mol. Reprod. Dev. 55:372-378, 2000. (C) 2000 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Midkine (Mdk) genes have been revealed to have different expression patterns in vertebrates and therefore, additional studies on Mdk expression patterns are required in more species. In this study, CagMdkb has been cloned and characterized from a SMART cDNA library of 10-somite stage embryos of Carassius auratus gibelio. Its full length cDNA is 1091 bp and encodes a sequence of 147 amino acids, which shows 97.3% identity to zebrafish Mdkb on the amino acid level. RT-PCR analysis reveals that CagMdkb is first transcribed in gastrula embryos and maintains a relatively stable expression level during subsequent embryogenesis. Western blot analysis reveals a 19 kDa maternal CagMdkb protein band and the zygotic CagMdkb protein is expressed from gastrula stage. At around 10 somite stage, the 19 kDa CagMdkb is processed to another protein band of about 17 kDa, which might be the secreted form with the 21-residue signal peptide removed. With immunofluorescence analysis, maternal CagMdkb protein was found to be localized in each blastamere cell of early embryos. The zygotic CagMdkb positive fluorescence signal was detected from a pair of large neurons at 18-somite stage. At the later stages, CagMdkb protein was also extended to numerous small neurons in the forebrain, midbrain and hindbrain, as well as to nerve fibers in the spinal cord. Co-localization with 3A10 antibody revealed CagMdkb immunoreactivity on developing Mauthner neurons, a member of reticulospinal neurons. In addition, ectopic expression of CagMdkb in early embryos of gibel carp and zebrafish suppressed head formation and CagMdkb function was found to depend on secretory activity. All these findings indicate that CagMdkb plays an important role in neural development during gibel carp embryogenesis and there is functional conservation of Mdkb in fish head formation.