29 resultados para Spike rush
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
调查了人工湿地水生植物根区理化特性,根系扩展的深度和位置,微生物和酶的分布状况;比较了不同深度人工湿地污水净化效果;探讨了人工湿地污水处理系统最佳净化空间位点。通过对香蒲、灯心草人工湿地的研究,发现植物的根系主要分布在基质上层25cm区域内,在5到10cm区域内,微生物数量最多,25cm区域次之,35cm以下较少。系统表层磷酸酶,葡聚糖脱水酶和蛋白酶的活性较20cm区域内各酶活性强。对于废水的净化而言,系统20cm和60cm处的净化效果差别很小。结果表明,人工湿地废水处理系统上部区域为较佳净化空间。
Resumo:
Recent experimental works devoted to the phenomena of mixing observed at metallic multilayers Ni/Si irradiated by swift heavy ions irradiations make it necessary to revisit the insensibility of crystalline Si under huge electronic excitations. Knowing that Ni is an insensitive material, such observed mixing would exist only if Si is a sensitive material. In order to extend the study of swift heavy ion effects to semiconductor materials, the experimental results obtained in bulk silicon have been analyzed within the framework of the inelastic thermal spike model. Provided the quenching of a boiling ( or vapor) phase is taken as the criterion of amorphization, the calculations with an electron-phonon coupling constant g(300 K) = 1.8 x 10(12) W/cm(3)/K and an electronic diffusivity D-e(300 K) = 80 cm(2)/s nicely reproduce the size of observed amorphous tracks as well as the electronic energy loss threshold value for their creation, assuming that they result from the quenching of the appearance of a boiling phase along the ion path. Using these parameters for Si in the case of a Ni/Si multilayer, the mixing observed experimentally can be well simulated by the inelastic thermal spike model extended to multilayers, assuming that this occurs in the molten phase created at the Ni interface by energy transfer from Si. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)](y) and [Fe(3 nm)/Al(x)](y) with x ranging between 1 and 10 mn, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of Pb-208, Xe-132 and Kr-84 ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems.
Resumo:
Bottom-simulating reflectors (BSRs) were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS). Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI) method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.
Resumo:
Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (Triticum aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.
Resumo:
The compressible Navier-Stokes equations discretized with a fourth order accurate compact finite difference scheme with group velocity control are used to simulate the Richtmyer-Meshkov (R-M) instability problem produced by cylindrical shock-cylindrical material interface with shock Mach number Ms = 1.2 and density ratio 1:20 (interior density/outer density). Effect of shock refraction, reflection, interaction of the reflected shock with the material interface, and effect of initial perturbation modes on R-M instability are investigated numerically. It is noted that the shock refraction is a main physical mechanism of the initial phase changing of the material surface. The multiple interactions of the reflected shock from the origin with the interface and the R-M instability near the material interface are the reason for formation of the spike-bubble structures. Different viscosities lead to different spike-bubble structure characteristics. The vortex pairing phenomenon is found in the initial double mode simulation. The mode interaction is the main factor of small structures production near the interface.
Resumo:
In order to capture shock waves and contact discontinuities in the field and easy to program with parallel computation a new algorithm is developed to solve the N-S equations for simulation of R-M instability problems. The method with group velocity control is used to suppress numerical oscillations, and an adaptive non-uniform mesh is used to get fine resolution. Numerical results for cylindrical shock-cylindrical interface interaction with a shock Mach number Ms=1.2 and Atwood number A=0.818, 0.961, 0.980 (the interior density of the interface/outer density p(1)/p(2) = 10, 50, 100, respectively), and for the planar shock-spherical interface interaction with Ms=1.2 and p(1)/p(2) = 14.28are presented. The effect of Atwood number and multi-mode initial perturbation on the R-M instability are studied. Multi-collisions of the reflected shock with the interface is a main reason of nonlinear development of the interface instability and formation of the spike-bubble structures In simulation with double mode perturbation vortex merging and second instability are found. After second instability the small vortex structures near the interface produced. It is important factor for turbulent mixing.
Resumo:
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shock-reconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Mach number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4A degrees attack angle.
Resumo:
测量了End-Hall离子源在不同条件下的离子束流密度,在不同离子束流密度下进行了心离子辅助沉积ZrO2薄膜的实验,研究了离子束流密度对薄膜折射率、晶相的影响.根据动量传递模型分析了离子束流密度对薄膜折射率的作用;根据热尖峰理论证明了一定条件下离子束流密度不会影响薄膜晶体结构。
Resumo:
The antibacterial drug furazolidone belonging to the group of nitrofuran antibacterial agents has been widely used as an antibacterial and antiprotozoal feed additive for poultry, cattle, and farmed fish in China. During application a large proportion of the administered drug may reach the environment directly or via feces. Although the use of furazolidone is prohibited in numerous countries, there are indications of its illegal use. It is known that furazolidone can be rapidly metabolized to 3-amino-2-oxazolidinone (AOZ) in the body of the target organism. In this study, a total of 21 fish feed samples, including 17 commercial fish feeds from local markets in China (representing 15 different formulations) and 4 fish feeds obtained from Germany and Turkey, respectively, are analyzed to determine whether the drug is still illegally used or commercially available feeds are contaminated by this drug. High-performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods have been implemented to determine furazolidone and its metabolite AOZ in fish feeds containing animal protein, respectively. An efficient and convenient cleanup method for the determination of furazolidone in fish feeds is developed, and a simple cleanup method for the determination of AOZ is used. Method recoveries for samples used were determined as 87.7-98.3% for furazolidone at two spike levels of 2.0 and 5.0 ng g(-1) and as 95.6-102.8% for AOZ at spike levels of 0.4 and 0.8 ng g(-1). Limits of detections were 0.4 ng g(-1) for furazolidone and 0.05 ng g(-1) for AOZ. The established methods are therefore suitable for the determination of furazolidone and its metabolite AOZ in fish feeds at trace contamination levels. Using the established methods, all fish feed samples have been proved to be furazolidone negative; however, AOZ is tested in 16 of 17 fish feeds obtained from local markets in the Hubei province of China, with a positive rate as high as 94.1%.
Resumo:
Silicon-on-insulator (SOI) substrate is widely used in micro-electro-mechanical systems (MEMS). With the buried oxide layer of SOI acting as an etching stop, silicon based micro neural probe can be fabricated with improved uniformity and manufacturability. A seven-record-site neural probe was formed by inductive-coupled plasma (ICP) dry etching of an SOI substrate. The thickness of the probe is 15 mu m. The shaft of the probe has dimensions of 3 mmx100 mu mx15 mu m with typical area of the record site of 78.5 mu m(2). The impedance of the record site was measured in-vitro. The typical impedance characteristics of the record sites are around 2 M Omega at 1 kHz. The performance of the neural probe in-vivo was tested on anesthetic rat. The recorded neural spike was typically around 140 mu V. Spike from individual site could exceed 700 mu V. The average signal noise ratio was 7 or more.