61 resultados para Sphere of influences

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The bioinorganic complexes of europium with N-acetyl-DL-alanine, N-acetyl-DL-valine, and DL-alanyl-DL-alanine have been synthesized and the Mossbauer spectra at room temperature have been measured for these solid state complexes. The Mossbauer parameters indicate that the water molecules in these complexes are not directly linked to the central europium ion and are outside the coordination sphere of europium and biological ligands, and that the chemical bond between the europium ion and the ligands may be predominantly ionic in character, with the possibility of partial covalent contribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural fluids with water-salt-gas are often found in every sphere of the Earth, whose physicochemical properties and geochemical behaviors are complicated. To study these properties and behaviors turns out to be one of the challenging issues in geosciences. Traditional approaches mainly depend on experiments and observations. However, it is impossible to obtain a large number of data covering a large T-P space of the Earth by experimental methods in the near future, which will hinder the advance of the theoretical study. Therefore, it is important to model natural fluids by advanced theoretical methods, by which limited experimental data can be extended to a large temperature-pressure-composition space. Physicochemical models developed in this dissertation are not only more accurate, but also extend the applied T-P-m region of the experimental data of the multi-fluid systems by about two times. These models provide the new and accurate theoretical tools for the geochemical research, especially for the water-rock interactions and the study of the fluid inclusions. The main achievements can be summarized as follows: (1) A solubility model on components of natural gases is presented. The solubility model on the systems of CH4-H2O-NaCl, C2H6-H2O-NaCl or N2-H2O-NaCl takes advantage of modern physicochemical theory and methods, and is an improvement over previous models whose prediction and precision are relatively poor. The model can predict not only the gas solubility in liquid phase but also water content in the gas phase. In addition, it can predict gases (methane or nitrogen) solubility in seawater and brine. Isochores can be determined, which are very important in the interpretation of fluid inclusions. (2) A density model on common aqueous salt solutions is developed. The density models with high precision for common aqueous salt solutions (H2O-NaCl, H2O-LiCl, H2O-KCl, H2O-MgCl2, H2O-CaCl2, H2O-SrCl2 or H2O-BaCl2) are absent in the past. Previous density models are limited to the relatively small range of experimental data, and cannot meet the requirement of the study of natural fluids. So a general density model of the above systems is presented by us based on the international standard density model of the water. The model exceeds the other models in both precision and prediction. (3) A viscosity model on common aqueous alkali-chloride solutions is proposed. Dynamic viscosity of water-salt systems, an important physics variable, is widely used in three-dimension simulation of the fluids. But in most cases, due to the lack of viscosity models with a wide T-P range, the viscosity of aqueous salt solutions is replaced by that of the water, giving rise to a relatively large uncertainty. A viscosity model with good prediction for the systems (H2O-NaCl, H2O-LiCl or H2O-KCl) is presented on the base of the international standard viscosity model of water and the density model developed before. (4) Equation of State applied in fluid inclusions. The best Equations of State in the world developed by others or us recently are applied in the study of the fluid inclusions. Phase equilibria and isochores of unitary system (e.g. H2O, CO2, CH4, O2, N2, C2H6 or H2S), binary H2O-NaCl system and ternary H2O-CH4-NaCl system are finished. From these programs and thermodynamic equations of coexisting ores, the physicochemical conditions before or after the deposits form can be determined. To some extent, it is a better tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Yaoyingtai Block is located within the northeastern Changling Depression of southern Songliao Basin, where the reservoir sandstones are petrophysically characterized by very low permeability, which results in the low success probability of artificial fracturing, and the low oil yield by water injection in the course of oil production. In order to improve the situations as stated above, this research aims to work out an integral fracturing technology and strategy applicable to the low permeable reservoirs in Yaoyingtai Block. Under the guidance of geological theory, reservoir engineering and technology, the subsurface occurrences of natural and hydraulic fractures in the reservoirs are expected to be delineated, and appropriate fracturing fluids and proppants are to be optimized, based on the data of drilling, well logging, laboratory and field experiments, and geological data. These approaches lay the basis of the integral fracturing technology suitable for the low permeable reservoir in the study area. Based on core sample test, in-situ stress analysis of well logging, and forward and inversion stress field modeling, as well as fluid dynamic analysis, the maximum in-situ stress field is unraveled to be extended nearly along the E-W direction (clustering along N85-135°E) as is demonstrated by the E-W trending tensional fractures. Hydraulic fractures are distributed approximately along the E-W direction as well. Faulting activities could have exerted obvious influences on the distribution of fractures, which were preferentially developed along fault zones. Based on reservoir sensitivity analysis, integrated with studies on rock mechanics, in-situ stress, natural fracture distribution and production in injection-production pilot area, the influences of primary fractures on fracturing operation are analyzed, and a diagnostic technology for primary fractures during depressurization is accordingly developed. An appropriate fracturing fluid (hydroxypropyl guar gum) and a proppant (Yixing ceramsite, with a moderate-density, 0.45-0.9mm in size) applicable to Qingshankou Formation reservoir are worked out through extensive optimization analysis. The fracturing fluid can decrease the damage to the oil reservoir, and the friction in fracturing operation, improving the effect of fracturing operation. Some problems, such as sand-out at early stage and low success rate of fracturing operations, have been effectively solved, through pre-fracturing formation evaluation, “suspension plug” fracturing, real-time monitoring and limited-flow fracturing. Through analysis of fracture-bearing tight reservoir with variable densities and dynamic analysis of influences of well patterns on fracturing by using numerical simulation, a fracturing operation scheme for the Qingshankou Formation reservoir is proposed here as being better to compress the short factures, rather than to compress the long fractures during hydraulic fracturing. It is suggested to adopt the 450m×150m inverted 9-spot well pattern in a diamond shape with wells placed parallel to fractures and a half fracture length of 60-75m.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rock heterogeneity plays an important role in rock fracturing processes. However, because fracturing is a dynamic process and it is very difficult to quantify materials' heterogeneity, most of the theories dealing with local failure were based on the homogeneity assumption, very few involving stress distribution heterogeneity and successive local failure due to rock heterogeneity. Therefore, based on various references, the author studied the laws and mechanism of influences of heterogeneity on rock fracturing processes, under the frame of the project "Study on Associate Mechanism between Rock Mass Fracture and Strength Failure", funded by Nation Natural Science Fund. the research consists of such aspects as size effect correction to rock fracture parameters, SEM (Scanning Electron Microscope) real-time observation on rock samples under different loads, micro-hardness testing, and numerical simulating based on microstructure. There are some important research results as followed: 1. Unifying formula for nonlinear and non-singularity correction, simplifying the complex process of correcting size effect on rock fracture toughness. 2. Using the methods of micro-hardness testing mineral grain and random jointing micrograph digitizing mineral slice, preliminarily solving the problems of numerical simulating and quantitatively describing the heterogeneous strength and its distribution rules, which has certain innovation and better practicability. 3. Based on SEM real-time observation, studying the micro-process of fracturing in marble, sandstone, granite, and mushroom stone samples with premanufactured cracks under tension, pure-shear and compression-shear conditions. Strength Failure was observed: there was some kind failure occurred before Fracture Failure in marble and sandstone samples with double cracks under pure-shearing. It is believed that the reason of strength failure developing is that stress concentrations is some locations are larger than that near the end of pre-manufactured cracks. 4. Based on the idea that rock macro-constitute is composed of complex microstructure, the promising method used to handle heterogeneity considers not only the heterogeneity of the rock medium, but also the heterogeneity of the rock structure. 5. Putting forward two types of rock strength failure: medium strength failure induced by heterogeneity of rock medium and structure strength failure induced by heterogeneity rock structure. 6. By evaluating potential fracture cell with proper failure priority, the numerical simulating method solved the problem of simulating the coextensive strength failure and fracture failure with convention strength failure rules. The result of numerical analysis shows that the influence of heterogeneity on rock fracturing processes is evident. The sinuosity of the rock fracture-propagation path, and the irregular fluctuation of loading displacement curve, is mainly controlled by the heterogeneity of rock medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, based on processing efficiency theory, we used the event-related potentials (ERP) and functional magnetic resonance image (fMRI) techniques to explore the underlying neutral mechanism of influences of negative emotion on three subsystems of working memory, phonological loop、 visuospatial sketh pad and the central executive. The modified DSMT (delayed matching-to-sample task) and n-back tasks were adopted and IAPS (International Affective Picture System) pictures were employed to induce the expected emotional state of subjects. The main results and conclusions obtained in the series of experiments are as the following: 1. In DSM tasks, we found P200 and P300 were reduced by negative emotion in both spatial and verbal tasks, however the increased negative slow wave were only observed in spatial tasks, not in verbal tasks. 2. In n-back tasks, the updating function of WM associated P300 was affected by negative emotion only in spatial tasks, not in verbal tasks. Current density analysis revealed strong current density in the fronto-parietal cortex only in the spatial tasks as well. 3. We adopted fMRI-block design and ROIs analysis, and found significant emotion and task effects in spatial WM-associated right superior parietal cortex; only emotion effect in verbal WM-associated Broca’s area; the interaction effect in attention-associated medial prefrontal area and bilateral inferior parietal cortex. These results implied the negative emotion mainly disturbed the spatial WM-related areas, and the attention control system play a key role in the interaction of spatial WM and negative emotion. 4. to further examine the effects of positive、negative and neutral emotion on tasks with different cognitive loads, the selective effect of emotion on the ERP components of spatial WM was only found in 2-back tasks, not in visual searching tasks. So, firstly the positive emotion as well as negative emotion selectively disturbed on spatial WM in light of the attention resource competition mechanism. Secondly, the selective influences based on the different WM systems, not the properties of spatial and verbal information. At last, the manner of the interaction of emotion and cognition is correlated with the cognitive load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cowper-Symonds and Johnson-Cook dynamic constitutive relations are used to study the influence of both strain rate effect and temperature variation on the material intrinsic length scale in strain gradient plasticity. The material intrinsic length scale decreases with increasing strain rates, and this length scale increases with temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Monte Carlo simulation is performed to study the dependence of collision frequency on interparticle distance for a system composed of two hard-sphere particles. The simulation quantitatively shows that the collision frequency drops down sharply as the distance between two particles increases. This characteristic provides a useful evidence for the collision-reaction dynamics of aggregation process for the two-particle system described in the other reference.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A depth-integrated two-dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigati

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows, and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size, soil bulk density, surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41.5 degrees similar to 50 degrees.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most simulations of random sphere packing concern a cubic or cylindric container with periodic boundary, containers of other shapes are rarely studied. In this paper, a new relaxation algorithm with pre-expanding procedure for random sphere packing in an arbitrarily shaped container is presented. Boundaries of the container are simulated by overlapping spheres which covers the boundary surface of the container. We find 0.4 similar to 0.6 of the overlap rate is a proper value for boundary spheres. The algorithm begins with a random distribution of small internal spheres. Then the expansion and relaxation procedures are performed alternately to increase the packing density. The pre-expanding procedure stops when the packing density of internal spheres reaches a preset value. Following the pre-expanding procedure, the relaxation and shrinking iterations are carried out alternately to reduce the overlaps of internal spheres. The pre-expanding procedure avoids the overflow problem and gives a uniform distribution of initial spheres. Efficiency of the algorithm is increased with the cubic cell background system and double link data structure. Examples show the packing results agree well with both computational and experimental results. Packing density about 0.63 is obtained by the algorithm for random sphere packing in containers of various shapes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The controlled equations defined in a physical plane are changed into those in a computational plane with coordinate transformations suitable for different Mach number M(infinity). The computational area is limited in the body surface and in the vicinities of detached shock wave and sonic line. Thus the area can be greatly cut down when the shock wave moves away from the body surface as M(infinity) --> 1. Highly accurate, total variation diminishing (TVD) finite-difference schemes are used to calculate the low supersonic flowfield around a sphere. The stand-off distance, location of sonic line, etc. are well comparable with experimental data. The long pending problem concerning a flow passing a sphere at 1.3 greater-than-or-equal-to M(infinity) > 1 has been settled, and some new results on M(infinity) = 1.05 have been presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent progress of submerged floating tunnel (SFT) investigation and SFT prototype (SFTP) project in Qiandao Lake (Zhejiang Province, P.R. China) is the background of this research. Structural damping effect is brought into present computation model in terms of Rayleigh damping. Based on the FEM computational results of SFTPs as a function of buoyancy-weight ratio (BWR) under hydrodynamic loads, the effect of BWR on the dynamic response of SFT is illustrated. In addition, human comfort index is adopted to discuss the comfort status of the SFTP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of constitution of precursor mixed powders and scan speed on microstructure and wear properties were designed and investigated during laser clad gamma/Cr7C3/TiC composite coatings on gamma-TiAl intermetallic alloy substrates with NiCr-Cr3C2 precursor mixed powders. The results indicate that both the constitution of the precursor mixed powders and the beam scan rate have remarkable influence on microstructure and attendant hardness as well as wear resistance of the formed composite coatings. The wear mechanisms of the original TiAl alloy and laser clad composite coatings were investigated. The composite coating with an optimum compromise between constitution of NiCr-Cr3C2 precursor mixed powders as well as being processed under moderate scan speed exhibits the best wear resistance under dry sliding wear test conditions. (C) 2008 Elsevier Ltd. All rights reserved.