202 resultados para Spectral bands
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM =(TM3 -TM5)/(TM3 +TM5); for VGT data, NDSII is calculated as NDSIIVGT =(B2- MIR)/(B2 + MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.
Resumo:
A new spectral technique for measuring the hyperfine structure of atoms is reported. A divergent atomic beam and a divergent laser beam are crossed. Because of the Doppler effect, the hyperfine structure of atomic levels will be directly displayed in the interaction region in the form of spatially resolved fluorescence arc bands. By measuring the spatial-fluorescence intensity distribution, it is possible to obtain the hyperfine splittings of atomic levels. Basic principles and experimental results are given.
Resumo:
The absorption spectra and upconversion fluorescence spectra of Er3+/-Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm(-1). The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices (c) 2006 Published by Elsevier B.V.
Resumo:
Five absorption hands, at 227, 300 340, 370 and 457nm, were observed in the optical absorption spectrum of Ce:Y3Al5O12 (Ce:YAG) crystals grown by the temperature gradient technique (TGT). The absorption bands at 227, 340, and 457 nm were identified Lis belonging to the Ce3+ -ion in the YAG crystal. A near UV optical emission band at 398nm was observed. with an excitation spectrum containing two bands, at 235 and 370nm. No fluorescence was detected under 300 nm excitation. The pair of absorption bands at 235 and 370 nm and the absorption band at 300 nm were attributed to the F- and F+-type color centers, respectively. The color centers model was also applied to explain the spectral changes in the Ce:YAG (TGT) crystal, including the reduction in the Ce 31 -ion absorption intensity, after annealing in an oxidizing atmosphere (air). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Absorption and emission spectral properties of GdVO4 single crystal doped with Ho3+ ions were investigated at room temperature. Polarized absorption cross section is calculated in the range of 400-2200nm. Results were analyzed and parameters were calculated based on Judd-Ofelt theory, the emission spectrum shows that the emission intensity around the wavelength of 546 nm associated with transition S-5(2) -> I-5(8) is much stronger than other bands in the observed range and potentially enable the green light output around this emission band in this crystal. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The spectrum properties of transparent (Nd0.01Y0.94La0.05)(2)O-3 ceramics were investigated. It was found that all absorption bands of (Nd0.01Y0.94La0.05)(2)O-3 ceramics are broadened, of which the full width at half maximum of the peak centered at 804 nm is 8 nm and its absorption cross section is 1.02x10(-20) cm(2). The emission cross section of (Nd0.01Y0.94La0.05)(2)O-3 ceramics located at 1078 nm is 5.71x10(-20) cm(2) and its fluorescent lifetime is 0.214 ms, which are similar to those of 1.0 at. %Nd:Y2O3 ceramics. These indicate that (Nd0.01Y0.94La0.05)(2)O-3 transparent ceramics has excellent spectroscopic properties.
Resumo:
In this paper, single crystal of ytterbium (Yb) doped Ca-5(PO4)(3)F (FAP) has been grown along the c-axis by using the Czochralski method. The segregation coefficients of Yb3+ in the Yb:FAP crystal has been determined by ICP-AES method. The absorption spectrum, fluorescence spectrum and fluorescence lifetime of the Yb:FAP crystal has been also measured at room temperature. In the absorption spectra, there are two absorption bands at 904 and 982 nm, respectively, which are suitable for InGaAs diode laser pumping. The absorption cross-section (sigma(abs)) is 5.117 x 10(-20) cm(2) with an FWHM of 4 nm at 982 nm. The emission cross-section is (sigma(em)) 3.678 x 10(-20) cm(2) at 1042 nm. Favorable values of the absorption cross-section at about 982 nm are promising candidates for laser diode (LD) pumping. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
For maximizing the effective applications of remote sensing in crop recognition, crop performance assessment and canopy variables estimation at large areas, it is essential to fully understand the spectral response of canopy to crop development and varying growing conditions. In this paper, the spectral properties of winter wheat canopy under different growth stages and different agronomic conditions were investigated at the field level based on reflectance measurements. It was proved that crop growth and development, nitrogen fertilization rates, nutrient deficit (e.g. lacking any kind of nitrogen, phosphorus and kalium fertilizer or lacking all of them), irrigation frequency and plant density had direct influence on canopy reflectance in 400-900 nm which including the visible/near infrared bands, and resulted in great changes of spectral curves. It was suggested that spectral reflectance of crop canopy can well reflect the growth and development of crop and the impacts from various factors, and was feasible to provide vital information for crop monitoring and assessment. ©2010 IEEE.
Resumo:
The present study reports an application of the searching combination moving window partial least squares (SCMWPLS) algorithm to the determination of ethenzamide and acetoaminophen in quaternary powdered samples by near infrared (NIR) spectroscopy. Another purpose of the study was to examine the instrumentation effects of spectral resolution and signal-to-noise ratio of the Buchi NIRLab N-200 FT-NIR spectrometer equipped with an InGaAs detector. The informative spectral intervals of NIR spectra of a series of quaternary powdered mixture samples were first located for ethenzamide and acetoaminophen by use of moving window partial least squares regression (MWPLSR). Then, these located spectral intervals were further optimised by SCMWPLS for subsequent partial least squares (PLS) model development. The improved results are attributed to both the less complex PLS models and to higher accuracy of predicted concentrations of ethenzamide and acetoaminophen in the optimised informative spectral intervals that are featured by NIR bands. At the same time, SCMWPLS is also demonstrated as a viable route for wavelength selection.
Resumo:
Infrared (IR) spectra of normal, hyperplasia, fibroadenoma and carcinoma tissues of human breast obtained from 96 patients have been determined and analyzed statistically. Several spectral differences were detected in the frequency regions of N-H stretching, amide I, II and III bands: (1) the bands in the region 3000-3600cm-1 shifted to lower frequencies for the carcinomatous tissue; (2) the A(3300)/A(3075) absorbance ratio was significantly higher for the fibroadenoma than for the other types of tissues; (3) the frequency of the a-helix amide I band decreased for the malignant tissue, while the corresponding beta -sheet amide I band frequency increased; (4) the A(1657)/A(1635) and A(1553)/A(1540) absorbance ratios were the highest for fibroadenoma and carcinoma tissues; (5) the A(1680)/A(1657) absorbance ratio decreased significantly in the order of normal > hyperplasia > fibroadenoma > carcinoma; (6) the A(1651)/A(1545) absorbance ratio increased slightly for the fibroadenoma and the carcinoma tissues; (7) the bands at 1204 and 1278 cm(-1), assigned to the vibrational modes of the collagen, did not appear in the original spectra as resolved peaks and were distinctly stronger in the deconvoluted spectra of the carcinoma tissue and (8) the A(1657)/A(1204) and A(1657)/A(1278) absorbance ratios, both yielding information on the relative content of collagen, increased in the order of normal < hyperplasia < carcinoma < fibroadenoma. The said differences imply that the information is useful for the diagnosis of breast cancer and malignant breast abnormalities, and may serve as a basis for further studies on conformational changes in tissue proteins during carcinogenesis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.
Resumo:
The development of the shear bands of saturated soil in coupling-rate- and pore-pressure-dependent simple shear has been discussed, using a simple model and a matching technique at the moving boundary of a shear band. Tt is shown that the development of shear bands are dominated by the coupling-rate and pore-pressure effect of the material. The strength of the soil acts as a destabilizer, whilst pore pressure diffusion makes the band expand. The theory is discussed and some computational solutions have been presented.
Resumo:
The deformation behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass was studied by in situ scanning electron microscopy (SEM) quasi-static uniaxial compression tests at room temperature. Multiple shear bands were observed with a large plasticity. Microscopic examination demonstrates that slipping, branching and intersecting of multiple shear bands are the main mechanisms for enhancing the plasticity of this metallic glass. Additionally, nano/micro-scale voids and cracks at the intersecting sites of shear bands and preferential etching of shear bands were observed as well. These observations demonstrated that the formation of shear bands in bulk metallic glasses is resulted mainly from local free volume coalescence.
Resumo:
The development of compaction bands in saturated soils,which is coupling—rate,inertial and pore—pressure—dependent,under axisymmetric loading was discussed,using a simple model and a matching technique at the moving boundary of a band.It is shown that the development of compaction bands is dominated by the coupling rate and pore—pressure effects of materia1.The soil strength makes the band shrinking,whilst pore pressure diffusion makes the band expand.Numerical simulations were carried out in this paper ·
Resumo:
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.