9 resultados para Spatio-numerical modelling
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube.
Resumo:
The present paper studies numerical modelling of near-wall two-phase flows induced by a normal shock wave moving at a constant speed, over a micronsized particles bed. In this two-fluid model, the possibility of particle trajectory intersection is considered and a full Lagrangian formulation of the dispersed phase is introduced. The finiteness of the Reynolds and Mach numbers of the flow around a particle as well as the fineness of the particle sizes are taken into account in describing the interactions between the carrier- and dispersed- phases. For the small mass-loading ratio case, the numerical simulation of flow structure of the two phases is implemented and the profiles of the particle number density are obtained under the constant-flux condition on the wall. The effects of the shock Mach number and the particle size and material density on particle entrainment motion are discussed in detail.The obtained results indicate that interphase non-equilibrium in the velocity and temperature is a common feature for this type of flows and a local particle accumulation zone may form near the envelope of the particle trajectory family.
Resumo:
The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
浅海波浪、潮汐风暴潮相互作用的研究是当今国际热点研究方向之一.该项研究针对典型浅海海域渤海,研究了在这个海域的波浪、潮汐风暴潮的相互作用以及物质输运规律.建立了一个渤海波浪和潮汐风暴潮运动相互作用的数值模式.模式主要由两部分组成:一个物理上先进的第三代浅海波浪数值模式和一个二维潮汐风暴潮数值模式,实现了两个模式耦合.运用这个模式,重点研究了波浪对表面拖曳系数的影响;波浪对底摩擦应力的作用;辐射应力对潮汐风暴潮水位的影响以及潮汐风暴潮对波浪的作用.在这个基础上,对物质输运规律进行了研究.
Resumo:
A full understanding of failure mechanism, critical hydrological condition, and process of mobilization and deposition of a landslide is essential for optimal design of stabilization measure and forecasting of landslide hazard. This requires a quantitative study of hydrological response of a slope to rainfall through field monitoring, laboratory test and numerical modelling. At 13:40 on September 18, 2002, a fill slope failed following a period of prolonged rain in Shenzhen, resulting in 5 fatalities and 31 injuries. The failed mass with a volume about 2.5×104m3 traveled about 140m on level ground. Field monitoring, laboratory test, theoretical analysis and numerical modelling were carried out to undestand the hydrological response and failure mechanism of this fill slope. This thesis mainly focuses on the following aspects: (1) The hydrological responses and failure processes of slopes under rainfall infiltration were reviewed. Firstly, the factors influencing on the hydrological responses of slopes were analysed. Secondly, the change of stress state of slope soil and modelling methods of slope failure under rainfall infiltration were reviewed. (2) The characteristics of the Yangbaodi landslide and associated rainfall triggering the failure were presented. The failure was characterized by shallow flowslide, due to an increase of ground water table caused by rainfall infiltration. (3) A fully automated instrumentation was carried out to monitor rainfall, and saturated – unsaturated hydrological response of the fill slope, using a raingauge, piezometers, tensiometers and moisture probes. A conceptual hydrogeological model was presented based on field monitoring and borehole data. Analysis of monitoring data showed that the high pore water pressure in fill slope was caused by upward flow of semiconfined groundwater in the moderately decomposed granite. (4) Laboratory and in-situ testing was performed to study the physical and mechanical properties of fills. Isotropically consolidated undrained compression tests and anisotropically consolidated constant shear stress tests were carried out to understand the failure mechanism of the fill slope. It is indicated that loosely compacted soil is of strain-softening behaviour under undrained conditions, accompanied with a rapid increase in excess pore water pressure. In anisotropically consolidated constant shear stress tests, a very small axial strain was required to induce the failure and the excess pore water pressure increased quickly at failure. This indicated that static liquefaction caused by rise in groundwater table due to rainfall infiltration occurred. (5) The hydraulic conductivity of the highly and moderately decomposed granite was estimated using monitering data of pore water pressure. A saturated – unsaturated flow was modeled to study the hydrological response of the fill slope using rainfall records. It was observed that the lagged failure was due to the geological conditions and the discrepancy of hydraulic conductivity of slope soils. The hydraulic conductivity of moderately decomposed granite is relatively higher than the other materials, resulting in a semiconfied groundwater flow in the moderately decomposed granite, and subsequent upward flow into the upper fill layer. When the ground water table in the fill layer was increased to the critical state, the fill slope failed. (6) Numerical exercises were conducted to replay the failure process of the fill slope, based on field monitoring, laboratory and in-situ testing. It was found that the fill slope was mobilized by a rapid transfer of the concentrated shear stress. The movement of failure mass was characterized by viscosity fluid with a gradual increase in velocity. The failure process, including mobilization and subsequent movement and deposition, was studied using numerical methods.
Resumo:
Approximate Box Relaxation method was used t'o simulate a plasma jet flow impinging on a flatplate at atmospheric pressure, to achieve a better understanding of the characteristics of plasma jet in materials surface treating. The flow fields under different conditions were simulated and analyzed. The distributions of temperature, velocity and pressure were obtained by modelling. Computed results indicate that this numerical method is suitable for simulation of the flow characteristics of plasma jet: and is helpful for understanding of the mechanism of the plasma-material processing.
Resumo:
Mode behaviour for SOI slot waveguides is modelled and analysed using a numerical full vectorial method based on the film mode matching method (MMM). Only the quasi-TE mode is investigated. Waveguide heights and slot widths, as well as silicon widths are properly chosen with respect to the single mode behaviour in the slot region. Comparison between the effective index method and our side loss method shows that our single mode condition is creditable. The optical power confinement in slot region for the quasi-TE mode is also studied and presented. We demonstrate that the maximum achievable optical power confinement P-slot and the maximum normalized average optical intensity I-slot are 42% and 26 mu m(-2), respectively.
Resumo:
The slide of unstable sedimentary bodies and their hydraulic effects are studied by numerical means. A two-dimensional fluid mechanics model based on Navier-Stokes equations has been developed considering the sediments and water as a mixture. Viscoplastic and diffusion laws for the sediments have been introduced into the model. The numerical model is validated with an analytical solution for a Bingham flow. Laboratory experiments consisting in the slide of gravel mass have been carried out. The results of these experiments have shown the importance of the sediment rheology and the diffusion. The model parameters are adjusted by trial and error to match the observed “sandflow”.
Resumo:
In addition to classical methods, namely kriging, Inverse Distance Weighting (IDW) and splines, which have been frequently used for interpolating the spatial patterns of soil properties, a relatively more accurate surface modelling technique is being developed in recent years, namely high accuracy surface modelling (HASM). It has been used in the numerical tests, DEM construction and the interpolation of climate and ecosystem changes. In this paper, HASM was applied to interpolate soil pH for assessing its feasibility of soil property interpolation in a red soil region of Jiangxi Province, China. Soil pH was measured on 150 samples of topsoil (0-20 cm) for the interpolation and comparing the performance of HASM, kriging. IDW and splines. The mean errors (MEs) of interpolations indicate little bias of interpolation for soil pH by the four techniques. HASM has less mean absolute error (MAE) and root mean square error (RMSE) than kriging, IDW and splines. HASM is still the most accurate one when we use the mean rank and the standard deviation of the ranks to avoid the outlier effects in assessing the prediction performance of the four methods. Therefore, HASM can be considered as an alternative and accurate method for interpolating soil properties. Further researches of HASM are needed to combine HASM with ancillary variables to improve the interpolation performance and develop a user-friendly algorithm that can be implemented in a GIS package. (C) 2009 Elsevier B.V. All rights reserved.