4 resultados para Space law

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, a rubber wedge compressed by a line load at its tip is asymptotically analyzed using a special constitutive law proposed by Knowles and Sternberg (K-S elastic law) [J. Elasticity 3 (1973) 67]. The method of dividing sectors proposed by Gao [Theoret. Appl. Fract, Mech. 14 (1990) 219] is used. Domain near the wedge tip can be divided into one expanding sector and two narrowing sectors. Asymptotic equations of the strain-stress field near the wedge tip are derived and solved numerically. The deformation pattern near a wedge tip is completely revealed. A special case. i.e. a half space compressed by a line load is solved while the wedge angle is pi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the adhesive contact between a rigid cylinder of radius R and a graded elastic half-space with a Young's modulus varying with depth according to a power-law, E = E-0(y/c(0))(k) (0 < k < 1), while the Poisson's ratio v remains constant. The results show that, for a given value of ratio R/C-0, a critical value of k exists at which the pull-off force attains a maximum; for a fixed value of k, the larger the ratio R/c(0), the larger the pull-off force is. For Gibson materials (i.e., k = 1 and v = 0.5), closed-form analytical solutions can be obtained for the critical contact half-width at pull-off and pull-off force. We further discuss the perfect stick case with both externally normal and tangential loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For creep solids obeying the power law under tension proposed by Tabor, namely sigma = b(epsilon) over dot(m), it has been established through dimensional analysis that for self-similar indenters the load F versus indentation depth h can be expressed as F(t) = bh(2)(t)[(h) over dot(t)/h(t)](m)Pi(alpha) where the dimensionless factor Pi(alpha) depends on material parameters such as m and the indenter geometry. In this article, we show that by generalizing the Tabor power law to the general three dimensional case on the basis of isotropy, this factor can be calculated so that indentation test can be used to determine the material parameters b and m appearing in the original power law. Hence indentation test can replace tension test. This could be a distinct advantage for materials that come in the form of thin films, coatings or otherwise available only in small amounts. To facilitate application values of this constant are given in tabulated form for a range of material parameters. (C) 2010 Elsevier B.V. All rights reserved.