9 resultados para Soil acidity--New Jersey--Middlesex County--Maps.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Apoptotic cells induce immunosuppression through unknown mechanisms. To identify the underlying molecular mediators, we examined how apoptotic cells induce immunoregulation by dendritic cells (DC). We found that administration of DC exposed to apoptotic c
Resumo:
Bone marrow-derived mesenchymal stem cells (MSCs) hold great promise for treating immune disorders because of their immunoregulatory capacity, but the mechanism remains controversial. As we show here, the mechanism of MSC-mediated immunosuppression varies
Resumo:
The relationships of eight moss species of Dicranum in 31 sites in main ecological systems in the Changbai Mountain with environmental factors were studied by canonical correspondence analysis (CCA). The results showed that altitude, soil sand percentage, water percentage, acidity and canopy density were important environmental factors influencing the distribution of the species of Dicranum . The relationships between Dicranum elongatum Schleich. ex Schwaegr ., D.groenlandicum Brid. and altitude,between D.japonicum Mitt., D.scoparium Hedw. and canopy density,between D.polysetum Sw., D. undulatum Schrad. ex Brid. and soil acidity and water percentage,were positively correlative. The niche overlaps among the eight species of Dicranum were calculated. The minimal spanning tree of the eight species on the two-dimensional scatter plot were also drawn based on their niche overlaps, which clearly revealed the ecological similarities of eight species.
Resumo:
Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size
Resumo:
Ocean acoustic propagation and reverberation in continental shelf regions is often controlled by the seabed and sea surface boundaries. A series of three multi-national and multi-disciplinary experiments was conducted between 2000-2002 to identify and measure key ocean boundary characteristics. The frequency range of interest was nominally 500-5000 Hz with the main focus on the seabed, which is generally considered as the boundary of greatest importance and least understood. Two of the experiments were conducted in the Mediterranean in the Strait of Sicily and one experiment in the North Atlantic with sites on the outer New Jersey Shelf (STRATAFORM area) and on the Scotian Shelf. Measurements included seabed reflection, seabed, surface, and biologic scattering, propagation, reverberation, and ambient noise along with supporting oceanographic, geologic, and geophysical data. This paper is primarily intended to provide an overview of the experiments and the strategies that linked the various measurements together, with detailed experiment results contained in various papers in this volume and other sources