54 resultados para Sodium iron ethylenediaminetetraacetic acid
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes Fe-II to Fe-III, and then electrochemical reduction of Fe-III therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.
Resumo:
High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.
Resumo:
Quantum chemical calculations based on DFT method were performed on three polydentate Schiff base compounds (PSCs) used as corrosion inhibitors for iron in acid media to determine the relationship between the molecular structure of PSC and inhibition efficiency. The structural parameters, such as the frontier molecular orbital energy HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), the charge distribution of the studied inhibitors, the absolute electronegativity (chi) values, and the fraction of electrons (Delta N) transfer from inhibitors to iron, were also calculated and correlated with inhibition efficiencies. The results showed that the inhibition efficiency of PSCs increased with the increase in E-HOMO and decrease in E-LUMO-E-HOMO; and the areas containing N atoms are most possible sites for bonding the metal iron surface by donating electrons to the metal. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A novel kinin-releasing and fibrin (ogen)olytic enzyme termed jerdonase was purified to homogeneity from the venom of Trimeresurus jerdonii by DEAE Sephadex A-50 anion exchange, Sephadex G-100 (superfine) gel filtration and reverse-phase high performance liquid chromatography (RP-HPLC). Jerdonase migrated as a single band with an approximate molecular weight of 55 kD under the reduced conditions and 53 kD under the non-reduced conditions. The enzyme was a glycoprotein containing 35.8% neutral carbohydrate. The N-terminal amino acid sequence of jerdonase was determined to be IIGGDECNINEHPFLVALYDA, which showed high sequence identity to other snake venom serine proteases. Jerdonase catalyzed the hydrolysis of BAEE, S-2238 and S-2302, which was inhibited by phenymethylsulfonyl fluoride (PMSF), but not affected by ethylenediaminetetraacetic acid (EDTA). Jerdonase preferentially cleaved the Aalpha-chain of human fibrinogen with lower activity towards Bbeta-chain. Moreover, the enzyme hydrolyzed bovine low-molecular-mass kininogen and releasing bradykinin. In conclusion, all results indicated that jerdonase was a multifunctional venom serine protease.
Resumo:
Selective extraction-separation of yttrium(Ill) from heavy lanthanides into 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim][PF6]) containing Cyanex 923 was achieved by adding a water-soluble complexing agent (EDTA) to aqueous phase. The simple and environmentally benign complexing method was proved to be an effective strategy for enhancing the selectivity of [C(n)mim] [PF6]/[Tf2N]-based extraction system without increasing the loss of [C(n)mim](+). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The nonstoichimetric Ba0.92Y2.15F8.29 submicrospheres that piled up by nanoparticles have been prepared via a solution-based method in a hydrothermal environment. The size distribution of the submicrospheres could be tuned by varying the amount of BaCl2. The fluoride source NaBF4 plays an important role in the formation of the submicrospheres. The chelator ethylenediaminetetraacetic acid regulates the growth of the primary nanoparticles as well as the aggregated submicrospheres. The photoluminescence properties of different concentrations of Eu3+-doped Ba0.92Y2.15F8.29 were investigated and the results revealed that the 8% concentration of Eu3+ ions is the optimum doping concentration and the Y3+ ions occupy the site of inversion symmetry.
Resumo:
We report a one-pot preparation method for a series of novel shaped gold microcrystals by simply mixing HAuCl4 with disodium salt of ethylenediaminetetraacetic acid (Na(2)EDTA). Under the different reaction temperatures, spinous structures, multipod microspheres, and rough surfaced microspheres were obtained. These microcrystals exhibit high surface-enhanced Raman scattering (SERS) activity.
Resumo:
The selective separation of Y from yttrium solution containing small heavy rare earth (HRE) impurities (Ho, Er, Tm, Yb, Lu) by liquid-liquid extraction using CA-100 in the presence of a water-soluble complexing agent of ethylenediaminetetraacetic acid (EDTA) was experimentally studied at 298K. Experiments were carried Out in two feeds, Feed-I: [RE](f) = 4.94 x 10(-3) M, Y = 98.5%, HRE (Ho, Er, Tm, Yb, Lu) = 1.5%; Feed-II: [RE](f) = 4.94 x 10(-3) M, Y = 99.9%, HRE (Ho, Er, Tm, Yb, Lu) = 0.1%, as a function of equilibrium pH (pH(eq)), the concentration ratio of [EDTA]:[HRE impurities]. It was shown that the extraction of HRE in the presence of EDTA was suppressed when compared to that of Y because of the masking effect, while the selective extraction of Y was enhanced and the separation factors increased to maximum at appropriate condition for Feed-I: Y/Ho = 1.53, Y/Er = 3.09, Y/Tm = 5.61, Y/Yb = 12.04, Y/Lu = 27.51 at pH 4.37 and [EDTA]:[HRE impurities] = 4: 1, for Feed-II: Y/Ho = 1.32, Y/Er = 1.91, Y/Tm = 2.00, Y/Yb = 3.05, Y/Lu = 3.33 at pH 4.42 and [EDTA]: [HRE impurities] = 8:1. The separation and purification of Y by this method was discussed.
Resumo:
Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T-1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D2O at 25degreesC and 9.4T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9+/-5.6%, 57.8+/-7.4% at 65-85 min; kidney 144.9+/-14.5%, 199.9+/-25.4% at 10-30 min for PQPS-GdDTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.
Resumo:
C-type lectins are calcium-dependent carbohydrate-binding proteins that play Important roles in innate immunity In this study, a C-type lectin homologue (SmLec1) was identified from turbot (Scophthalmus maximus) and analyzed at expression and functional levels. The open reading frame of SmLec1 is 504 bp, with a 5'-untranslated region (UTR) of 101 bp and a 3'-UTR of 164 bp The deduced amino acid sequence of SmLec1 shares 34%-38% overall identities with the C-type lectins of several fish species In silico analysis identified in SmLec1 conserved C-type lectin features, including a carbohydrate-recognition domain, four disulfide bond-forming cysteine residues, and the mannose-type carbohydrate-binding motif In addition, SmLec1 possesses a putative signal peptide sequence and is predicted to be localized in the extracellular. Expression of SmLec1 was highest in liver and responded positively to experimental challenges with fish pathogens Recombinant SmLec1 (rSmLec1) purified from yeast was able to agglutinate the Gram-negative fish pathogen Listonella anguillarum but not the Gram-positive pathogen Streptococcus uncle The agglutinating ability of rSmLec1 was abolished in the presence of mannose and ethylenediaminetetraacetic acid and by elevated temperature (65 degrees C) Further analysis showed that rSmLec1 could stimulate kidney lymphocyte proliferation and enhance the killing of bacterial pathogen by macrophages Taken together, these results suggest that SmLec1 is a unique mannose-binding C-type lectin that possesses apparent immunomodulating property and is likely to be involved in host defense against bacterial infection (C) 2010 Elsevier Ltd. All rights reserved
Resumo:
A newly developed polymer coil shrinking theory is described and compared with the existing entangled solution theory to explain electrophoretic migration behaviour of DNA in hydroxypropylmethylcellulose (HPMC) polymer solution in buffer containing 100 mM tris(hydroxymethyl)aminomethane 100 mM boric acid, 2 mm ethylenediaminetetraacetic acid at pH 8.3. The polymer coil shrinking theory gave a better model to explain the results obtained. The polymer coil shrinking concentration, C-s, was found to be 0.305% and the uniform entangled concentration, C+, 0.806%. The existence of three regions (the dilute, semidilute, and concentrated solution) at different polymer concentrations enables a better understanding of the system to guide the selection of the best conditions to separate DNA fragments. For separating large fragments (700/800 bp), dilute solutions (HPMC < 0.3%) should be used to achieve a short migration time (10 min). For small fragments (200/300 bp), concentrated solutions are preferred to obtain constant resolution and uniform separation. The best resolution is 0.6% HPMC due to a combined interaction of the polymer coils and the entangled structure. The possibility of DNA separation in semidilute solution is often neglected and the present results indicate that this region has a promising potential for analytical separation of DNA fragments.