40 resultados para Slot-based task-splitting algorithms

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seismic wave field numerical modeling and seismic migration imaging based on wave equation have become useful and absolutely necessarily tools for imaging of complex geological objects. An important task for numerical modeling is to deal with the matrix exponential approximation in wave field extrapolation. For small value size matrix exponential, we can approximate the square root operator in exponential using different splitting algorithms. Splitting algorithms are usually used on the order or the dimension of one-way wave equation to reduce the complexity of the question. In this paper, we achieve approximate equation of 2-D Helmholtz operator inversion using multi-way splitting operation. Analysis on Gauss integral and coefficient of optimized partial fraction show that dispersion may accumulate by splitting algorithms for steep dipping imaging. High-order symplectic Pade approximation may deal with this problem, However, approximation of square root operator in exponential using splitting algorithm cannot solve dispersion problem during one-way wave field migration imaging. We try to implement exact approximation through eigenfunction expansion in matrix. Fast Fourier Transformation (FFT) method is selected because of its lowest computation. An 8-order Laplace matrix splitting is performed to achieve a assemblage of small matrixes using FFT method. Along with the introduction of Lie group and symplectic method into seismic wave-field extrapolation, accurate approximation of matrix exponential based on Lie group and symplectic method becomes the hot research field. To solve matrix exponential approximation problem, the Second-kind Coordinates (SKC) method and Generalized Polar Decompositions (GPD) method of Lie group are of choice. SKC method utilizes generalized Strang-splitting algorithm. While GPD method utilizes polar-type splitting and symmetric polar-type splitting algorithm. Comparing to Pade approximation, these two methods are less in computation, but they can both assure the Lie group structure. We think SKC and GPD methods are prospective and attractive in research and practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polarization modulator based on splitting with a Savart plate and rotation of an analyzer for a moire system with grating imaging is presented, and its modulation principle is analyzed. The polarization modulator is simple and achromatic. It is composed of a polarizer, a Savart plate, and an analyzer. The polarizer and the Savart plate are placed in front of the index grating to split the image of the scale grating in the moire system. The analyzer is placed behind the grating and rotated to realize the modulation of the moire signal. The analyzer can be rotated either continually with high speed or step by step with low speed to form different modulation modes. The polarization modulator makes the moire system insensitive to the change of initial intensity. In experiments, we verified the usefulness of the polarization modulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel vision chip for high-speed target tracking. Two concise algorithms for high-speed target tracking are developed. The algorithms include some basic operations that can be used to process the real-time image information during target tracking. The vision chip is implemented that is based on the algorithms and a row-parallel architecture. A prototype chip has 64 x 64 pixels is fabricated by 0.35 pm complementary metal-oxide-semiconductor transistor (CMOS) process with 4.5 x 2.5 mm(2) area. It operates at a rate of 1000 frames per second with 10 MHz chip main clock. The experiment results demonstrate that a high-speed target can be tracked in complex static background and a high-speed target among other high-speed objects can be tracked in clean background.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

信息技术的不断进步使得软件产品的应用领域不断扩大,同时软件产品的规模也在迅速膨胀。软件产品的开发模式已由最初的手工作坊式开发逐渐转变为大规模的工程化软件开发。这使得资源调度问题逐渐成为软件项目管理的核心研究内容之一。 软件项目与传统工业项目相比具有如下两个显著特点:其一是软件项目对人力资源能力的依赖性非常高;其二是软件项目在开发过程中具有的不确定性因素较多,也就是风险较高。这两个特点决定了传统工业调度方法不能很好地适用于软件项目管理,同时也为软件项目资源优化调度问题研究提出了新的挑战。需要根据软件项目的特点研究适合的资源调度方法为软件项目管理工作提供支持。 本文的研究工作旨在通过对软件项目的结构进行分析和描述,在建立软件项目核心要素模型的基础上,考虑软件项目高人力资源能力依赖性和高风险性两大特征,由人力资源能力和风险作为驱动因素,对软件项目中人力资源和项目缓冲两大核心资源进行优化分配和调度,以提高软件项目的资源利用效率和软件项目执行的稳定性。本文的主要贡献有: (1)建立了软件项目资源优化调度研究框架QMMT和项目核心要素模型PTHR。 QMMT研究框架由问题驱动(Question Driven),模型描述(Model Description),方法研究(Method Research)和工具验证(Tool Validation)四个模块构成。四个模块之间既存在顺序关系也存在信息反馈机制,框架具有良好的适应性和可扩展性。实践表明,QMMT研究框架对研究软件项目资源优化调度问题具有良好的指导作用。本文中涉及软件项目资源优化调度的多个研究问题均遵循QMMT研究框架。 通过对软件项目所包含的各个要素及要素之间的关系进行定义和描述,我们建立了软件项目核心要素模型PTHR。模型对软件项目的四个要素:项目(Project)、任务(Task)、人力资源(Human Resource)、风险(Risk)以及四个要素之间的关系进行了形式化定义和描述。PTHR模型涵盖了软件项目的核心要素并具有良好的可扩展性,可以为资源优化调度中具体问题的分析、算法的设计、流程的安排以及工具开发提供底层支持。PTHR模型是本文后续方法中相关系列子模型的基础模型。 (2) 提出了软件项目中任务-人员匹配的三维匹配模型3D-THM和基于3D-THM模型的任务人员优化分配方法。 任务人员匹配是人力资源调度的基础。3D-THM(3 Dimensional model for Task Human Matching)模型通过对人力资源的技术能力、性格能力和职业规划进行描述,以及对任务的技术能力需求、性格能力需求和职业规划需求进行描述,设定相应的多因素匹配算法,为任务-人员的全面优化匹配提供支持。实验表明,3D-THM模型较好的描绘了软件项目中任务-人员优化匹配问题,能够体现软件项目的高人力资源能力依赖性。模型实例化后所得到的匹配方法和相应的原型工具可为软件项目资源优化调度以及软件过程建模提供人员优化匹配支持,能够提高项目管理人员的工作效率,提升项目人员对任务分配的满意度。 (3) 提出了基于人员可用性的人力资源调度方法。 在对任务人员进行优化匹配的基础上,通过综合考虑人力资源能力和工作时间实现了基于人员可用性的人力资源调度方法。方法结合软件项目的结构特征,建立了任务人员可用性约束模型THACM(Task Human resources Availability Constraints Model)。基于THACM模型实现了在给定资源集合、任务集合下的人力资源自动分配和项目进度的自动安排。方法可有效解决采用矩阵组织结构的企业所面临的低资源可见性问题,协助其提高人力资源的利用效率。 (4)提出了基于任务优先级的抢占式人力资源调度方法PP-HAS。 在对人力资源可用性进行考虑的基础上,为了解决多项目环境下常见的资源冲突问题,我们提出了基于任务优先级的抢占式人力资源调度方法PP-HAS(Task Priority Based Preemptive Human Resource Scheduling Method)。方法首先建立了综合考虑进度、成本、质量三方面因素的基于价值的任务优先级模型VBTPM(Value Based Task Priority Model),将该任务优先级模型与过程Agent技术结合,通过设计支持抢占的人力资源调度流程,实现了多过程Agent协商下的人力资源优化调度。方法通过抢占和再计划实现了人力资源的动态高效利用,能够为资源冲突的解决以及项目的再计划工作提供决策支持。 (5)提出了风险驱动的软件项目缓冲资源分配方法。 项目缓冲的合理分配是降低风险对项目进度造成影响的重要手段。我们在软件项目资源调度方法中加入对风险因素的考量,基于软件项目中风险的特征,建立了简化的风险模型RRM(Reduced Risk Model)。基于RRM模型提出了风险驱动的项目缓冲分配方法,旨在软件项目的执行效率和稳定性二者之间进行权衡。模拟实验的结果表明,相对于传统关键链项目管理理论中尾部集中的项目缓冲分配方法,风险驱动的项目缓冲分配方法能够在确保对项目平均执行工期产生较小影响的同时,显著降低项目执行时计划变更的发生频率。该缓冲分配方法与项目模拟工具可以帮助项目经理确定合适的项目缓冲时间长度以及缓冲分配方案,进而提高软件项目计划的可信性和执行的稳定性。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在面向目标追踪等应用的无线传感器网络研究中,协同任务分配机制的研究是很重要的。基于动态联盟机制的协同任务分配方法是事件触发的,适用于任务出现频率相对较低的大规模无线传感器网络。本文在基于动态联盟机制研究的基础上,首先引入了联盟覆盖范围和休眠盟员的概念,进一步消除针对同一任务的检测传感器节点的冗余,降低系统的能量消耗;而后又给出了一种动态联盟的更新机制,以保证动态联盟执行任务时的连续性,在一定程度上保证网络的检测性能。最后通过仿真,从系统总能耗、目标捕获率和检测误差标准差等方面检验了算法的性能,并给出了缓冲带宽度等参数对能耗和网络检测性能的影响。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a path-following phase unwrapping algorithm and a phase unwrapping algorithm based on discrete cosine transform (DCT) which accelerates the Computation and suppresses the propagation of noise. Through analysis of fringe pattern with serious noises simulated in mathematic model, we make a contrast between path-following algorithm and DCT algorithm. The advantages and disadvantages or analytical fringe pattern are also given through comparison of two algorithms. Three-dimensional experimental results have been given to prove the validity of these algorithms. Despite DCT phase unwrapping technique robustness and speed in some cases, it cannot be unwrapping inconsistencies phase. The path-following algorithm can be used in automation analysis of fringe patterns with little influence of noise. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is about 1.8dB at 1550nm, and the mode conversion loss can be less than 0.5dB. The discussion of the present state-of-the-art is also involved. The proposed coupler can be used in chip-to-chip communication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CLEMAPS is a tool for multiple alignment of protein structures. It distinguishes itself from other existing algorithms for multiple structure alignment by the use of conformational letters, which are discretized states of 3D segmental structural states. A letter corresponds to a cluster of combinations of three angles formed by C-alpha pseudobonds of four contiguous residues. A substitution matrix called CLESUM is available to measure the similarity between any two such letters. The input 3D structures are first converted to sequences of conformational letters. Each string of a fixed length is then taken as the center seed to search other sequences for neighbors of the seed, which are strings similar to the seed. A seed and its neighbors form a center-star, which corresponds to a fragment set of local structural similarity shared by many proteins. The detection of center-stars using CLESUM is extremely efficient. Local similarity is a necessary, but insufficient, condition for structural alignment. Once center-stars are found, the spatial consistency between any two stars are examined to find consistent star duads using atomic coordinates. Consistent duads are later joined to create a core for multiple alignment, which is further polished to produce the final alignment. The utility of CLEMAPS is tested on various protein structure ensembles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue–residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue–residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be optimized to support the prescribed plasma equilibrium geometry. In this paper, a genetic algorithm-based method is applied to solve the optimization of the positions and currents of tokamak PF coils. To achieve this goal, we first describe the free-boundary code EQT Based on the EQT code, a genetic algorithm-based method is introduced to the optimization. We apply this new method to the PF system design of the fusion-driven subcritical system and plasma equilibrium geometry optimization of the Experimental Advanced Superconducting Tokamak (EAST). The results indicate that the optimization of the plasma equilibrium geometry can be improved by using this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method to construct a quality map, called modulation-phase-gradient variance (MPGV), is proposed, based on modulation and the phase gradient. The MPGV map is successfully applied to two phase-unwrapping algorithms - the improved weighted least square and the quality-guided unwrapping algorithm. Both simulated and experimental data testify to the validity of our proposed quality map. Moreover, the unwrapped-phase results show that the new quality map can have higher reliability than the conventional phase-derivative variance quality map in helping to unwrap noisy, low-modulation, and/or discontinuous phase maps. (c) 2006 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fast and reliable phase unwrapping (PhU) algorithm, based on the local quality-guided fitting plane, is presented. Its framework depends on the basic plane-approximated assumption for phase values of local pixels and on the phase derivative variance (PDV) quality map. Compared with other existing popular unwrapping algorithms, the proposed algorithm demonstrated improved robustness and immunity to strong noise and high phase variations, given that the plane assumption for local phase is reasonably satisfied. Its effectiveness is demonstrated by computer-simulated and experimental results.