15 resultados para Siple Dome
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Comparative analyses of differentially expressed genes between somatic cell nuclear transfer (SCNT) embryos and zygote-developing (ZD) embryos are important for understanding the molecular mechanism underlying the reprogramming processes. Herein, we used the suppression subtractive hybridization approach and from more than 2900 clones identified 96 differentially expressed genes between the SCNT and ZD embryos at the dome stage in zebrafish. We report the first database of differentially expressed genes in zebrafish SCNT embryos. Collectively, our findings demonstrate that zebrafish SCNT embryos undergo significant reprogramming processes during the dome stage. However, most differentially expressed genes are down-regulated in SCNT embryos, indicating failure of reprogramming. Based on Ensembl description and Gene Ontology Consortium annotation, the problems of reprogramming at the dome stage may occur during nuclear remodeling, translation initiation, and regulation of the cell cycle. The importance of regulation from recipient oocytes in cloning should not be underestimated in zebrafish.
Resumo:
Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly governed by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.
Resumo:
Thoroughly understanding AFM tip-surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome (delta) over the dome height (y(o)) is approximately (n-4) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
锗酸盐和氟铝酸盐透红外玻璃材料作为窗口或头罩材料具有广泛的应用前景。结合锗酸盐玻璃含有少量水的问题,在成分中引入氟化物,实验表明:随氟化物含量增加.玻璃中羟基含量逐渐降低。同时通过对熔制温度的调整,获得了不合羟基的红外玻璃。针对氟铝酸盐玻璃在冷却过程中易析晶的问题,在氟化物组分中加入少量重金属氧化物TeO2,得到析晶性能好的氧氟铝酸盐玻璃。同时给出了两类红外材料的一些物理、化学性质。
Resumo:
Self-assembled InAs quantum dots (QDs) in an InAlGaAs matrix, lattice-matched to InP substrate, have been grown by molecular beam epitaxy (MBE). Transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL) are used to study their structural and optical properties. In InAs/InAlGaAs/ InP system, we propose that when the thickness of InAs layer deposited is small, the random strain distribution of the matrix layer results in the formation of tadpole-shaped QDs with tails towards random directions, while the QDs begin to turn into dome-shaped and then coalesce to form islands with larger size and lower density to release the increasing misfit strain with the continuous deposition of InAs. XRD rocking curves showing the reduced strain with increasing thickness of InAs layer may also support our notion. The results of PL measurements are in well agreement with that of TEM images. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The shape evolution of Ge/Si(001) islands grown by ultrahigh vacuum chemical vapor deposition were investigated by atomic force microscopy at different deposition rates. We find that, at low deposition rates, the evolution of islands follows the conventional pathway by which the islands form the pyramid islands, evolve into dome islands, and dislocate at a superdome shape with increasing coverage. While at a high deposition rate of 3 monolayers per minute, the dome islands evolve towards the pyramids by a reduction of the contact angle. The presence of the atomic intermixing between the Ge islands and Si substrate at high deposition rate is responsible for the reverse evolution. (C) 2001 American Institute of Physics.
Resumo:
Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Korea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scan-sonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure detected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%-30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these structures, gas hydrate could not form due to low gas concentration.
Resumo:
The obduction of equatorial 13 degrees C Water in the Pacific is investigated using a simulated passive tracer of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The result shows that the 13 degrees C Water initialized in the region 8 degrees N-8 degrees S, 130 degrees-90 degrees W enters the surface mixed layer in the eastern tropical Pacific, mainly through upwelling near the equator, in the Costa Rica Dome, and along the coast of Peru. Approximately two-thirds of this obduction occurs within 10 years after the 13 degrees C Water being initialized, with the upper portion of the water mass reaching the surface mixed layer in only about a month. The obduction of the 13 degrees C Water helps to maintain a cool sea surface temperature year-round, equivalent to a surface heat flux of about -6.0 W m(-2) averaged over the eastern tropical Pacific (15 degrees S-15 degrees N, 130 degrees W-eastern boundary) for the period of integration (1993-2006). During El Nino years, when the thermocline deepens as a consequence of the easterly wind weakening, the obduction of the 13 degrees C Water is suppressed, and the reduced vertical entrainment generates a warming anomaly of up to 10 W m(-2) in the eastern tropical Pacific and in particular along the coast of Peru, providing explanations for the warming of sea surface temperature that cannot be accounted for by local winds alone. The situation is reversed during La Nina years.
Resumo:
Changling fault depression is the biggest fault subsidence in south of Songliao Basin. In its Lower Cretaceous Yingcheng and Shahezi formations developed thick source rocks of deep lake facies and developed poly-phase volcanic rock reservoirs as well. In recent years, significant breakthroughs have been obtained in hydrocarbon exploration of volcanic rock reservoir in the different fault depressions in Songliao basin. Lately, I have been involved in hydrocarbon exploration in the Changling rift depression, especially volcanic rock reservoirs and exploration targets research, participating in the deployment of well Yaoshen 1 which gained over 40 × 104m3 natural gas flow. As quick changes of lithology and facies in Changling area in the south of Songliao basin, and the volcanic rock interludes distribution in continental clastic rock and shale in 3D space, so the identification of volcanic rock types and distribution become a difficult problem. Thus, based on the integrated research of the wild outcrop observation, gravity, magnetic and seismic data, geophysical logging, drilling and coring, laboratory test, this paper carried out the reservoir identification, description and prediction of volcanic rocks in Changling fault depression. In this area, this paper analyzed the volcanic rocks litho-facies, the eruption period, and characteristics of cycles. At the same time, tried to know how to use logging, seismic data to separate volcanic rocks from sandstone and shale, distinguish between volcanic reservoir and non-reservoir, distinguish between intermediate-basic and acidic volcanic rocks, and how to identify traps of volcanic rocks and its gas-bearing properties, etc. Also it is summarized forming conditions and distribution of traps, and possible gas-bearing traps were optimized queuing management. Conclusions as follows: There are two faulted basements in Changling fault depression, granite basement in the southeast and upper paleozoic epimetamorphic basement in the northwest. The main volcanic reservoirs developed in Yingcheng period, which was the intermediate-basic and acidic volcanic eruptions, from the south to north by the intermediate-basic to acid conversion. The volcanic vents are gradually young from south to north. According to information of the re-processing 3D seismic data and gravity-magnetic data, the large volcanic vent or conduit was mainly beaded-distributed along the main fault. The volcanic rocks thickness in Yingcheng formation was changed by the deep faults and basement boundary line. Compared with the clastic rocks, volcanic rocks in Changling area are with high resistance and velocity (4900-5800), abnormal Gamma. All kinds of volcanic rocks are with abnormal strong amplitude reflection on the seismic stacked section except tuff. By analyzing the seismic facies characteristics of volcanic rocks, optimizing seismic attributes constrained by logging, using seismic amplitude and waveforms and other attributes divided volcanic rocks of Yingcheng formation into four seismic zones in map. Currently, most volcanic gas reservoirs are fault-anticline and fault-nose structure. But the volcanic dome lithologic gas reservoirs with large quantity and size are the main gas reservoir types to be found.
Resumo:
There are many Archean TTG grey suites in the Wutaishan area, northern Shanxi Province, China. In the past one hundred years, many geologists have done excellent research work in the Wutaishan and its adjacent regions. However, the TTG suites were almost neglected. Located in the northern slope of Mt. Hengshan-namely the Archean Hengshan Island Arc, intruded the Zhujiafang supercrustal rocks at almost 2.5Ga, the Yixingzhai TTG Suite is originated from partial melting of the ancient lower crust upper mantle by REE and trace elements, and the emplacement occurred in an Archean island arc. The rocks are mainly of tonalitic, I type, and calc-alkaline trends are found in the magmatic evolution. At almost 1.8 Ga, the suite was transformed to be dome-like schists in an arc-arc collision event, and the rocks were metamorphosed to an extent of amphibolitic to granulitic facies. The peak metamorphic condition is of 710-760 ℃/0.68-0.72GPa, and the subsequent cooling history is recorded as 560-620 ℃/0.46-0.60GPa. In the center of the Mt. Wutaishan-known as the Archean Wutaishan Island Arc, intruded the Archean Chechang-Beitai TTG Suite, which is of 2.5Ga old and of trondhjemitic and tonalitic, with coexisting I- and S-types and a trondhjemitic magmatic evolution trend. Through REE and trace elements, the suite is believed to be from the partial melting of the ancient lower crust or upper mantle. The 1.8 Ga collision event also made the suite gneissic and the it was metamorphosed to be amphibolitic facies, whose peak condition is approximately of 680 (±50) ℃/0.7Gpa, and the subsequent cooling process is recorded as 680 (±50) ℃、550(±50) ℃、420(±10) ℃. Crustal growth is fulfilled through magmatic intrusion as well as eruption at about 2.5Ga, arc-arc collision at about 1.8 Ga in the Wutaishan area and its environs. Additionally, the biotite-muscovite and muscovite-plagioclase geothermometers are refined, and the biotite-hornblende geothermometer is developed in this dissertation.
Resumo:
This paper studied the metallotectonics, altered rocks, altered minerals and fluid inclusions. The conclusions are: (1)The gold deposits in Jiaodong district were formed quickly uplifted tectonic setting which was induced by the Mantle doming in Mesozoic era. (2)Both Jiaojia-type and Linglong-type gold mineralizations were formed in the same tectonic-fluid system. (3) The Ar-Ar age of the earlier stage of the gold mineralization is 114~116Ma. (4)The development of the plaiting ore-control tectonic system underwent four stagesrcounterclockwise ductile compresso-shearing, clockwise brittle tenso-shearing and counterclockwise brittle compresso-shearing and brittle normal faulting after mineralization. (5)The mineralization has five stages: quartz and k-feldspar stage, quartz and ferro-carbonate and pyrite stage, quartz and chalcopyrite stage, pyrite and sericite and quartz stage and carbonate stage, and they make up four ore-types: red ore, vein ore, mottled ore and grey ore. (6) The features of mineralizations and ore-forming fluids in different stages are different. But the ore-forming fluids are rich in Si, Fe, P_2O_5, H_2O, CO_2, SO_4~(2-), K~+, Na~+, Ca~(2+) and Cl~- in general and their salinities are from 4 to 18 NaClwt%. (7) The ore-forming fluids came mainly from the Mantle in early stage, then mainly from magma, and mainly from meteoric water in the last stage. (8) Au in the ore-forming fluid was mainly carried in the form of complex of Au and S. (9)The temperature of ore-forming fluid is from 350℃ to 120℃and its pressure is from 20MPa to 38MPa. (10)The gold vein composed by quartz, ferro-carbonate, chalcopyrite and pyrite (vein ore) was filled in the tensional fracture in the top of the magma dome. The disseminated ore bodies composed by pyrite, sericite and quartz (grey ore) was metasomatized in the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, which is placed in the flank top of magma dome. In the joint and fracture induced by the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, veiniet and stockwork ore (red ore) and veinlet-disseminated ore (mottled ore) composed by quartz and pyrite was formed. (ll)Fluid boiling maybe one of the form of the ore-forming substances precipitation.
Resumo:
The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.
Resumo:
Dabie shan lies between Northchina crust and Yangzi crust, which is the result of the collisional orogenen in Triassic period. The biggest area of UHP metamorphic zone have been found in Dabie Shan, which have been verified formed during the course of collision and extrusion after orogenic activity. The Dabie shan is divisioned into four parts, which are North Huaiyang metamorphic zone, North Dabie complex zone, South Dabie ultra-high pressure metamorphic zone and Susong metamorphic zone. Extension structure of late Mesozoic is the key to explain the intrusion and outcrop of UHP metamorphic rocks in Dabie Shan. During the course of structure evolution of the Dabie shan in late Mesozoic period, Luotian dome was formed with the old gneiss lifting from the core of the Dabie shan. There are four enormous ductile zone circled Luotian dorm. Xiaotian-mozitan shear zone is the limit of North Huaiyang metamorphic zone and North Dabie complex zone; Shuihou-wuhe shear zone is the limit of North Dabie complex zone and South Dabie ultra-high pressure metamorphic zone; Taihu-mamiao shears zone is the limit of South Dabie ultra-high pressure metamorphic zone and Susong metamorphic zone and Susong-Qingshuihe shear zone is the south limit of Susong metamorphic zone; the old stress at Dabie shan in late Mesozoic was about 90MPa through the experiment of transmission electricity microscope. The main four ductile shear zone of Dabie shan all have the characteristic of detachment, Xiaotian-mozitan shear zone detached to NNE, the detachment direction of Shuihou-wuhe shear zone and Taihu-mamiao shears zone is SSE, and Susong-Qingshuihe shear zone is SW. The finite strain measurement show that Xiaotian-mozitan shear zone have experienced detachment which was more than 50km, and the detachment of Susong-Qingshuihe shear zone was more than 12km in late Mesozoic; the Flin parameter of Shuihou-wuhe shear zone is much smaller than 1(0.01-0.1), which show that this shear zone was squeezed when it was formed and the initiative function of Luotian granite intrusion during the course of detachment. The Flin parameter of Taihu-mamiao shears zone is above 1(1.1) and Susong-Qingshuihe shear zone is much more than 1(7.6), which show that they are formed in the state of extension at the beginning. These all Flin parameter imply a transition from pure shear to simple shear of the south three shear zone circling Luotian dome from north to south. The rock group analysis show that the rocks inside shear zone encountered middle or high temperature metamorphic activity. The single mineral ~(40)Ar/~(39)Ar age of the main shear zone at Dabie shan show that the three shear zone north to Luotian dome were formed about 190Ma.Taihu-mamiao shear zone was the earliest, Susong shear zone was later than former, and Shuihou-wuhe sheanaone was the latest. They were all the chanel of returning of UHP metamorphic rocks, so they all representative the returning age of UHP metamorphic rocks. The final outcrop of these UHP metamorphic rocks was due to the detachment aroused by the enormous magma intrusion. The biotite age of deformed rocks in Susong-Qingshuihe shear zone is in average 126Ma, and the age of Xiaotian-mozitan is about 125Ma, which is in the same time or a little later than magma intrusion of Luotian dome, and imply that granite intrusion of late Mesozoic in Dabie orogenen is the reason of the detachment.