11 resultados para Shake
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The cross sections of the 18 electron photoionization and corresponding shake-up processes for Li atoms in the ground state 1s(2)2s and excited states 1s(2)2p, 1s(2)3p, 1s(2)3p and 1s(2)3d are calculated using the multi-configuration Dirac-Fock method. The latest experimental photoelectron spectrum at hv = 100 eV [Cubaynes D et al. Phys. Rev. Lett. 99 (2007) 213004] has been reproduced by the present theoretical investigation excellently. The relative intensity of the shake-up satellites shows that the effects of correlation and relaxation become more important for the higher excited states of the lithium atom, which are explained very well by the spatial overlap of the initial and final state wavefunctions. In addition, strong dependence of the cross section on the atomic orbitals of the valence electrons are found, especially near the threshold.
Resumo:
随着化工行业的发展,大量有毒有害难降解有机物随工业废水的排放进入环境,这些物质能够在环境中长期存在、积累和扩散,通过食物链对动植物的生存及人类的健康造成不良影响。本文以苯酚、对氯硝基苯、氯苯和十六烷为模拟污染物,以前期研制的功能菌剂为对象,经过紫外线线诱变筛选出优于出发菌株的功能菌,对诱变后功能菌的理化性能进行了研究,对菌种进行了鉴定,在此基础上,就其相互之间的微生态关系进行研究,为混合发酵提供理论基础,并就其最佳发酵条件及发酵参数进行了研究,最后对发酵产品的性能进行了检测。目前,国内外有关功能菌剂的研究还存在多方面的不足,主要包括:①由于多菌种混合发酵过程较为复杂,各菌之间存在复杂的相互作用,影响因素较多,关于菌种之间的相互关系研究得很少,环境功能菌剂的发酵方法大多采用单独发酵后混合的方式。单独发酵对原材料、设备和能源的利用率较低,对于多菌种制剂发酵,在设备、能源和原材料的方面造成的浪费更大,将会大幅增加菌剂的生产成本,影响多菌种功能菌剂的发展;②功能菌剂生产过程的质量控制方面研究得较少;③功能菌剂产品的稳定性、抗冲击性能研究得较少,对环境微生物制剂的研究主要集中在菌种选育和培养条件优化方面。 通过本论文研究,得到以下主要结论。 (1)在紫外线诱变处理中,用紫外线对发生一定程度退化的出发菌株进行诱变处理后,六株具有高效降解性能的菌株被筛选出来,诱变筛选出的菌株形态和ERIC-PCR指纹图谱与出发菌株相比发生了明显改变;而且诱变后的菌株对目标难降解底物的降解能力均得到改善,其中,FPN、FCB、F14、FEm对目标底物的降解率提高了20%以上;诱变后菌株经过7次连续传代接种后,对目标难降解底物的降解率无显著变化,具有一定的遗传稳定性。并对诱变后的功能菌进行了初步的鉴定,这6株菌都分别是芽孢杆菌。 (2)对诱变后的功能菌相互之间的微生态关系进行了研究,通过抑菌实验、生长量以及基质消耗量的比较,确定它们之间的生长关系是无害共栖关系,可以进行混合发酵。 (3)对该功能菌剂进行发酵培养条件研究,结果表明发酵培养基的最佳成分(g/L):葡萄糖 31.0g/L、玉米粉10.0g/L、磷酸氢二钾1.0g/L、硫酸铵1.1g/L、硫酸镁0.55g/L。通过研究不同的培养条件对菌体生长和降解性能的影响,确定了最佳培养条件:培养基初始pH7.5;最适温度32℃;培养基装液量125mL(250 mL三角瓶),以及培养时间对降解性能的影响,培养20 h的产物对降解最为有利。通过研究添加不同目标污染物对菌体生长和降解性能的影响,确定了添加目标污染物的最佳量以及最佳时间:苯酚投加量:1.125 g/L,对氯硝基苯投加量:0.1 g/L;最佳投加时间为发酵培养开始后4 h。 (4)以摇瓶分批发酵最优条件为基础,对FPN、F10、FCB、FNa、F14 和 FEm进行了摇瓶分批发酵试验。以摇瓶分批发酵试验数据为依据,对功能菌剂分批发酵动力学进行了研究,建立了菌体生长和基质消耗的动力学模型,拟合模型能较好的反映功能菌剂分批发酵过程。 (5)功能菌剂和活性污泥协同作用,可以提高系统的生物降解能力,功能菌剂投加量为2%,新鲜活性污泥3500 mg/L,降解24 h条件下,功能菌剂和活性污泥的协同作用对COD的去除率和对照组相比,最多的提高了36.8%。功能菌剂和活性污泥协同作用以及活性污泥的单独作用,其生物降解过程均符合一级反应动力学过程,功能菌剂和活性污泥协同作用的生物降解动力学方程为:,相关系数97%。采用SBR运行方式,引入功能菌剂的SBR系统明显能够改善和提高生物降解的效率。与仅有活性污泥的系统相比,系统对COD的平均去除率可以提高27.1%,同时,系统的耐负荷冲击以及耐毒害冲击的性能比仅有活性污泥的SBR系统强,特别是负荷冲击对引入功能菌剂的SBR系统影响很小。仅有活性污泥的SBR系统经过负荷冲击和毒害冲击之后,不能恢复到冲击之前的水平,而且系统有效作用时间的周期比引入功能菌剂的SBR系统相比大大缩短,而引入功能菌剂的SBR系统处理效果较为稳定,恢复能力很强。 Along with the development of industries, many recalcitrant organic chemicals have been discharged into natural environments together with wastewaters and can exist in waters, soil and sediments for a long time without degradation. These haz-ardous substances, their byporducts and metabolizabilities can be highly toxic, mu-tagenic and carcinogenic, thereby threatening animals, plants and human health through food chain. Consequently the removal of these compounds is of significant interest in the area of wastewater treatment. In this dissertation, the phenol, hydro-quinone, chlorobenzene and hexadecane treated as the model pollutants, the func-tional microorganism agent was used as the starting strains, they treated with ultra-violet light, and then the mutant strains with high degradation ability were screened out and identified primarily, the relationship between these stains were studied, the medium composition and fermentation conditions were optimized, the degradation ability of the fermented production was tested. The literature survey indicates that the study of the microorganism agent is far from complete and more information is re-quired on following problems. 1, Because of the complexity of relationship in mixed fermentation and the complicated factors, the study is hardly to process.2, There is a lack of information on the quality control of the producing process .3, And there is a lack of information on the stability about the microorganism agent. In this dissertation, the main results of the present study could be summarized as follows: (1)The degenerate starting strains were treated with the ultraviolet light, and six mutant strains with high biodegradation ability were screened out by using the me-dium with selective pressure of model pollutants. The mutant strains had great changes in colonialmorphology and ERIC-PCR fingerprinting. And the mutant strains got obvious advantages over the starting strains in degradation ability and over 20% improvement of removal rates was achieved for FPN、FCB、F14 and FEm. The de-gradation ability of the mutant strains was stable after seven generations. After that, the mutant strains were primarily identified as bacillus respectively. (2) The relationship between these mutant strains was studied. By the compari-son of antibiosis effect, biomass and consumption of substrate, the relationships were neutralism and they could be mixed fermented. (3) The optimized cultivation conditions were as follows: glucose 31.0 g/L, corn power 10 g/L, K2HPO4 1.0 g/L, (NH4)2SO4 1.1 g/L, MgSO4 0.55 g/L, initial pH7.5, temperature 32℃, working volume 125 mL/250 mL, and cultivation time 20h (con-sidering the time effect on degradation ability), adding pollutants phenol (1.125 g/L) and hydroquinone (0.1 g/L) into the broth at 4 h after cultivation. (4) Based on the above optimum condition, the batch fermentation was per-formed with strains FPN, F10, FCB, FNa, F14 and FEm in shake flask. The batch fermentation kinetics was studied based on the experimental data. Two kinetic models were constructed which could reflect the regularity of growth and substrate consump-tion in the process of batch fermentation. (5) The co-operation of functional microorganism agent and activated sludge could raise biodegradation of system by adding some microorganism agent and 3500 mg/L fresh activated sludge. Bioaugumentation by the addition of high effective deg-radation culture enhanced the treatment effect of SBR system and the COD removal rate was increased by 20%-36.8%. Its biodegradation matched first-order dynamical reaction equation, and the reaction equation was ln0.2327.391ct=−+. The micro-organism agent had the effect of optimization to activated sludge micro-ecosystem. The SBR system adding 2% microorganism agent, the average COD removal rate of that was increased by 27.1% and stronger anti-shock ability to load and toxicant were achieved (compared with SBR system just adding activated sludge). Especially the load-shock has barely effect to the SBR system adding microorganism agent. After the load and toxicant shock, the SBR system just adding activated sludge couldn’t come back to original level and the activated sludge micro-ecosystem was frustrated. The applying of microorganism agent increased biological activity and system’s re-sistance ability to load shock and toxicant shock.
Resumo:
以克拉维酸产生菌棒状链霉菌Streptomyces clavuligerus CCRC11518(ATCC 27064)III50为出发菌株, 首先比较各种物理和化学诱变剂处理对其克拉维酸生物合成的影响, 确定了亚硝基胍为棒状链霉菌诱变育种的诱变剂及其处理剂量: 2mg/ml、40min. 经浓度为2mg/ml的亚硝基胍处理40min后, 采用新颖理性化筛选方法, 通过逐步筛选自身代谢产物抗性突变株、克拉维酸抗性突变株和链霉素抗性突变株, 最终得到一株克拉维酸高产菌VI118(效价633μg/ml), 其克拉维酸效价是出发菌株(效价377μg/ml)的167.9%. 该高产突变株在琼脂斜面培养基上连续传接10代, 克拉维酸效价保持稳定. 通过单因子和多因子摇瓶正交试验, 对高产菌株VI118的发酵条件进行了研究, 确定最佳发酵条件: 甘油60g, 水解植物蛋白 60g, KH2PO4 0.5 g, 玉米浆 7.5g, MnSO4•H2O 0.34g, MgSO4•7H2O 0.99g, FeSO4•7H2O 0.56g, 蒸馏1000ml, pH 7.0, 发酵培养基装量20ml/250ml三角瓶, 接种量10%, 培养温度28ºC, 220r/min摇床培养72h后测定效价. 在最佳发酵条件下克拉维酸效价达到651μg/ml, 同时把初始发酵培养基的昂贵成分替换为廉价的工业原料. 通过摇瓶分批补料试验, 得到最佳补料物质和补料方式:在上述最佳发酵条件下, 分别在发酵培养48h、56h、64h、72h时补加4ml无菌水, 80h发酵结束, 克拉维酸效价达到905μg/ml. 在不增加原料成本的情况下通过摇瓶补料方式克拉维酸效价为未补料的139.0%, 总产量为未补料的264%. By a novel rational screening method, mutant Streptomyces clavuligerus CCRC11518(ATCC 27064)III50(titres 377μg/ml), as the clavulanic acid-producing parent strain, was treated by NTG (2mg/ml) for 40min, and the self-generated metabolites resistant mark, the clavulanic acid resistant mark and the streptomycin resistant mark were added step by step. Finally, the mutant VI118(titres 633μg/ml)with the three marks was obtained. The clavulanic acid productivity of this mutant was increased by 167.9% compared with the parent strain. After reproducing 10 generations on the agar medium slant, the productivity of this mutant was stable. The optimum fermentation conditions were established as followings: glycerol 60g, acid hydrolyzed vegetable protein 60g, KH2PO4 0.5g, corn steep liquor 7.5g, MnSO4•H2O 0.34g, MgSO4•7H2O 0.99g, FeSO4•7H2O 0.56g, distilled water 1 liter, pH 7.0, 20ml in 250ml shake-flask, inoculation 10%(v/v), fermentation temperature 28ºC, rotation speed 220 r/min, time 72h. The clavulanic acid productivity was 651μg/ml, while used the low-priced industrial raw materials. After studying on fed-batch in the shake-flask, the optimum fed-batch manner was obtained: under optimum fermentation conditions, at 48h, 56h, 64h and 72h, adding 4ml distilled water into each flask, fermentation ending at 80h. The clavulanic acid productivity was increased by 139% compared with no fed-batch, meanwhile the total yield was increased by 264%.
Resumo:
Recent research carried out at the Chinese Institute of Applied Chemistry has contributed significantly to the understanding of the radiation chemistry of polymers. High energy radiation has been successfully used to cross-link fluoropolymers and polyimides. Here chain flexibility has been shown to play an important role, and T-type structures were found to exist in the cross-linked fluoropolymers. A modified Charlesby-Pinner equation, based upon the importance of chain flexibility, was developed to account for the sol-radiation dose relationship in systems of this type. An XPS method has been developed to measure the cross-linking yields in aromatic polymers and fluoropolymers, based upon the dose dependence of the aromatic shake-up peaks and the F/C ratios, respectively. Methods for radiation cross-linking degrading polymers in polymer blends have also been developed, as have methods for improving the radiation resistance of polymers through radiation cross-linking.
Resumo:
The crystal structures, electronic spectra, and Cu2p XPS of Cu(III) complexes Na4H[Cu(H2TeO6)(2)]. 17H(2)O and Na4K[Cu(HlO(6))(2)]. 12H(2)O have been described. The characterizations of a Cu(III) atom in a complex are as follows: (i) In a square-planar coordination, the average bond length of Cu-O is 0.183 nm, shorter than the 0.190-0.200 nm found for a Cu(II) complex. (2) The ''blue shift'' occurs for d-d transitions in the electronic spectrum of the Cu(III) complex compared to those of its related Cu(II) complex, resulting from the higher valence state. (3) Cu(III) compounds with CuO4 square-planar coordination are expected to be diamagnetic whereas Cu(II) compounds to be paramagnetic. (4) Comprehensive investigations on Cu2p XPS show that the binding energy of Cu2p(3/2) of a pure Cu(III) compound is about 2.0 eV higher than that of its corresponding Cu(II) compound: the shake-up satellites do not appear in the Cu2p XPS for a pure diamagnetic Cu(III) compound, the same as found for a diamagnetic Ni(II) compound: the FWHM of the signal of Cu2p XPS may become broader for Cu(III) compound because its core hole's lifetime shortens due to the higher valence state of copper. (C) 1995 Academic Press, Inc.
Resumo:
X-Ray photoelectron spectra of some bioinorganic complexes of La, Ce, PT, Nd, Sm and Eu with N-acetylalanine have been measured and the 3d5/2 and 3d3/2 main peaks and their satellites have also been assigned. ne spin-orbit splitting between the 3d5/2 and 3d3/2 core-level of the rare earth ion in these complexes becomes slightly larger than that of the free rare earth atom due to the effect of the crystal field. The satellite for the 3d main peaks of La in the solid state complex are in higher binding energy region and may be attributable to the L --> 4f charge-transfer shake-up process. The satellites for the 3d main peaks of Ce, Pr, Nd, Sm and Eu are in the lower binding energy region and may be attributable to the 4f --> L charge-transfer shake-down process.
Resumo:
The effects of irradiation on some members of the family of aromatic polymers with a cardo group, such as polyetherketone with a cardo group (PEK-C) and polyethersulfone with a cardo group (PES-C), were studied. It was found that PEK-C and PES-C can be crosslinked by irradiation under vacuum. Moreover, it was also found that the intensity of the shake-up peak of x-ray photoelectron spectroscopy (XPS) for PEK-C and PES-C varies with irradiation dose. Gelation doses (Rg) of PEK-C and PES-C were estimated from the XPS shake-up peak.
Resumo:
为进一步研究配合物在双烯烃催化聚合反应体系中的作用,我们用XPS研究了一些铈的化合物,为探讨铈配合物的电子结构积累必要数据。对于某些简单的铈化合物,已有一些作者研究,对于Ce3d的伴峰指定是Shake-up过程,还是Shake-downw伴峰说法不一。我们通过系统研究,对于Ce3d区域的峰提出一些看法。
Resumo:
X-射线光电子能谱(XPS)振起(Shake-Up)伴峰主要是伴随主光电子的电离所导致的最高占有轨道到最低未占有轨道电子跃迁的结果.Carlson及Clark的工作声明这种振起伴峰是某些共轭π电子体系的表征,振起伴峰的相对强度与π电子共轭情况有关。 含酚酞侧基聚芳醚酮(PEK-C)是一种新型耐高温工程塑料,其主侧链均带苯环:
Resumo:
本文用XPS、DTA和TG分析了四苯基钴卟啉化学修饰电极的热分解行为,它不同于四苯基铁卟啉.由XPS谱图揭示了四苯基钴卟啉与玻璃碳电极之间的相互作用,进而阐述了经热处理的四苯基钴卟啉化学修饰电极的表面结构与电催化稳定性的关系.从Co2p_3/2和2p_(1/2)能级的自旋分裂间距及其Shake-up伴峰,了解经热处理后的四苯基钴卟啉修饰电极中钴自旋态变化,并且从Co的L_3VV俄歇跃迁计算出Co的双电离能,其双电离能与电催化活性有一定关系。
Resumo:
The chitosanase production was markedly enhanced by substrate induction, statistical optimization of medium composition and culture conditions by Microbacteritan sp. OU01 in shake-flask. A significant influence of (NH4)(2)SO4, MgSO4 center dot 7H(2)O and initial pH on chitosanase production was noted with Plackett-Burman design. It was then revealed with the method of steepest ascent and response surface methodology (RSM) that 19.0 g/L (NH4)(2)SO4, 1.3 g/L MgSO4 and an initial pH of 2.0 were optimum for the production of chitosanase; colloidal chitosan appeared to be the best inducer for chitosanase production by Microbacterium sp. OU01. This optimization strategy led to the enhancement of chitosanase from 3.6 U/mL to 118 U/mL. (c) 2006 Elsevier Ltd. All rights reserved.