31 resultados para Sensor integration

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enhanced technique for interrogating fiber Bragg grating wavelength shift using cascade wavelength division multiplexer (WDM) couplers was proposed and demonstrated. Three WDM couplers which show a linear filter function over the expected wavelength range are employed and cascaded to track Bragg wavelength shifts. Compared with single WDM demodulator. sharper spectral slope is obtained and considerable linear filter range is kept. The static and dynamic strain sensor demodulation experiments demonstrated that the simple passive technique improves the sensitivity approximately two times and keeps 5nm linear demodulation range based on our devices. The cascade WDM coupler demodulation system has high scan rate which can be used to monitor fast vibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypersonic waverider forebody is designed in this paper. For the present waverider, the undersurface is carved out as a stream surface of a hypersonic inviscid flow field around wedge-elliptic cone, and the upper surface is assumed to be a freestream surface. A finite-volume code is used to generate the three-dimensional flow field. The leading edge is determined by satisfying the condition that the lip is situated at the intersection line of shocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environment temperature has inevitable effects on property of the convect ion-based tilt sensors. It not only redefines the application, but also prevents the improvement of the sensor performance. Numerical simulation of the fluid flow in the chamber of a sensor was performed and the influence of the environment temperature was studied in this paper. At zero tilt angle, the temperature distribution along the perpendicular line cross the heat source at various environment temperatures was presented. It was found that the flow varied dramatically at different environment temperatures, which would cause the output signal vary accordingly, even when the tilt angle was kept at a constant, because this device works by sensing the change of flow. At the same condition, we present the numerical results when the temperature difference across the heat source and the environment was kept at the same, in those results, it was found that the temperature difference at every point along the perpendicular line cross the heat source keep the same, this result confirms the similarity principle of nature convection. Second, A method of eliminating environment temperature infect on property of convect ion-based tilt sensor, which is based on the theory of flow similarity, is proposed. It was found that a thermal transistance can be piped on the circuit of heat source to compensate the temperature of the heat source. A compensative circuit was specially designed which can keep flow similarity by changing heat source temperature in order to eliminate the influence of environment temperature. The experiment results show that above 70% temperature drift can be eliminated by this compensative circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the fabrication of a Mach-Zehnder optical modulator in LiNbO3 by femtosecond laser micormachining, which is composed of optical waveguides inscripted by a femtosecond laser and embedded microelectrodes subsequently using femtosecond laser ablation and selective electroless plating. A half-wave voltage close to 19 V is achieved at a wavelength of 632.8 nm with an interaction length of 2.6 mm. This simple and cost-effective technique opens up new opportunities for fabricating integrated electro-optic devices. (C) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that a Raman sensor integrated with a micro-heater, a microfluidic chamber, and a surface-enhanced Raman scattering (SERS) substrate can be fabricated in a glass chip by femtosecond laser micromachining. The micro-heater and the SERS substrate are fabricated by selective metallization on the glass surface using a femtosecond laser oscillator, whereas the microfluidic chamber embedded in the glass sample is fabricated by femtosecond laser ablation using a femtosecond laser amplifier. We believed that this new strategy for fabricating multifunctional integrated microchips has great potential application for lab-on-a-chips. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach based on the gated integration technique is proposed for the accurate measurement of the autocorrelation function of speckle intensities scattered from a random phase screen. The Boxcar used for this technique in the acquisition of the speckle intensity data integrates the photoelectric signal during its sampling gate open, and it repeats the sampling by a preset number, in. The average analog of the in samplings output by the Boxcar enhances the signal-to-noise ratio by root m, because the repeated sampling and the average make the useful speckle signals stable, while the randomly varied photoelectric noise is suppressed by 1/ root m. In the experiment, we use an analog-to-digital converter module to synchronize all the actions such as the stepped movement of the phase screen, the repeated sampling, the readout of the averaged output of the Boxcar, etc. The experimental results show that speckle signals are better recovered from contaminated signals, and the autocorrelation function with the secondary maximum is obtained, indicating that the accuracy of the measurement of the autocorrelation function is greatly improved by the gated integration technique. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fiber Bragg grating temperature sensor is proposed and experimentally demonstrated with a long-period grating as a linear response edge filter to convert wavelength into intensity-encoded information for interrogation. The sensor is embedded into an aluminum substrate with a larger coefficient of thermal expansion to enhance its temperature sensitivity. A large dynamic range of 110 degreesC and a high resolution of 0.02 degreesC are obtained in the experiments. The technique can be used for multiplexed measurements with one broadband source and one long-period grating, and therefore is low Cost. (C) 2004 Society of PhotoOptical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel highly sensitive wave front detection method for a quick check of a flat wave front by taking advantage of a non-zero-order pi phase plate that yields a non-zero-order diffraction pattern. When a light beam with a flat wave front illuminates a phase plate, the zero-order intensity is zero. When there is a slight distortion of the wave front, the zero-order intensity increases. The ratio of first-order intensity to that of zero-order intensity is used as the criterion with which to judge whether the wave front under test is flat, eliminating the influence of background light. Experimental results demonstrate that this method is efficient, robust, and cost-effective and should be highly interesting for a quick check of a flat wave front of a large-aperture laser beam and adaptive optical systems. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As feature size decreases, especially with the use of resolution enhancement technique, requirements for the coma aberrations in the projection lenses of the lithographic tools have become extremely severe. So, fast and accurate in situ measurement of coma is necessary. In the present paper, we present a new method for characterizing the coma aberrations in the projection lens using a phase-shifting mask and a transmission image sensor. By measuring the image positions at multiple NA and partial coherence settings, we are able to extract the coma aberration. The simulation results show that the accuracy of coma measurement increases approximately 20% compared to the previous straightforward measurement technique. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) sensor for the measurement of high temperature is proposed and experimentally demonstrated. The interrogation system of the sensor system is simple, low cost but effective. The sensor head is comprised of one FBG and two metal rods. The lengths of the rods are different from each other. The coefficients of thermal expansion of the rods are also different from each other. The FBG will be strained by the sensor head when the temperature to be measured changes. The temperature is measured basis of the wavelength shifts of the FBG induced by strain. A dynamic range of 0-800 degrees C and a resolution of 1 degrees C have been obtained by the sensor system. The experiment results agree with theoretical analyses. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) sensor system based on an interrogating technique by two parallel matched gratings was designed and theoretically discussed. With an interrogation grating playing the role of temperature compensation grating simultaneously, the wavelength drifts induced by temperature and strain were discriminated. Additionally, the expressions of temperature and strain were deduced for our solution, and dual-value problem and cross sensitivity were solved synchronously through data processing. The influence of the FBG's parameters on the dynamic range and precision was discussed. Besides, the change of environment temperature cannot influence the dynamic range of the sensor system through temperature tuning. The system proposed in this paper will be of great significance to accelerate the real engineering applications of FBG sensing techniques. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We proposed a high accuracy image sensor technique for sinusoidal phase-modulating interferometer in the field of the surface profile measurements. It solved the problem of the CCD's pixel offset of the same column under two adjacent rows, eliminated the spectral leakage, and reduced the influence of external interference to the measurement accuracy. We measured the surface profile of a glass plate, and its repeatability precision was less than 8 nm and its relative error was 1.15 %. The results show that it can be used to measure surface profile with high accuracy and strong anti-interference ability. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and characterization of a fiber Fabry-Perot interferometer (FFPI) acoustic wave detector with its Q point being stabilized actively. The relationship between the reflectivity of the F-P cavity facets and cavity length was theoretically analyzed, and high visibility of 100% was realized by optimized design of the F-P cavity. To prevent the drifting of the Q point, a new stabilization method by actively feedback controlling of the diode laser is proposed and demonstrated, indicating the method is simple and easy operating. Measurement shows that good tracing of Q point was effectively realized. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The key issues of engineering application of the dual gratings parallel matched interrogation method are expanding the measurable range, improving the usability, and lowering the cost by adopting a compact and simple setup based on existing conditions and improving the precision of the data-processing scheme. A credible and effective data-processing scheme based on a novel divisional look-up table is proposed based on the advantages of other schemes. Any undetermined data is belonged to a certain section, which can be confirmed at first, then it can be looked up in the table to correspond to microstrain by the scheme. It not only solves inherent problems of the traditional one (double value and small measurable range) but also enhances the precision, which improves the performance of the system. From the experimental results, the measurable range of the system is 525 mu epsilon, and the precision is +/- 1 mu epsilon based on normal matched gratings. The system works in real time, which is competent for most engineering measurement requirements. (C) 2007 Elsevier GmbH. All rights reserved.