15 resultados para Self-exchange Rates
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The electron self-exchange rates (k(ex)) of viologen and its derivatives are estimated by using microelectrode voltammetry in poly(ethylene glycol) films. The dependences of supporting electrolyte concentration and sizes of viologen and its derivatives on k(ex) and diffusion coefficients (D) are discussed. Results show that k(ex) increases with the decrease of supporting electrolyte concentration and sizes of reactants. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The preparation and cyclic voltammetric behaviors of self assembled monolayers (SAMs) containing electroactive viologen group have been investigated. Treatment of this viologen SAM with solutions of alkanethiols remits in replacing the electroactive third, shifting negatively its formal potentials and decreasing its heterogeneous elixtron transfer constants along with the immersion time. The aim of the work is to understand the exchange regularity of the mixed SANK on gold electrode surface.
Resumo:
The diffusion coefficients (D) of quinhydrone were estimated in polymer electrolytes by using non-steady-state chronoamperometry and steady-state current voltammetry. The D values have been estimated in polyethylene glycol (PEG) containing different concentrations, and cations of supporting electrolytes, and in different solvents over a range of temperatures. The dependencies of electroactive probe diffusion coefficients on temperature, supporting electrolyte concentration and polymer chain length are discussed. The results show that D increases with increasing temperature and decreasing concentration of supporting electrolyte. The diffusion coefficient depends strongly on the length of polymer chain and decreases sharply with increasing polymer chain length. The contribution of electron self-exchange has been explored and it seems to be negligible here. (C) 1998 Elsevier Science S.A.
Resumo:
A novel method to tune surface wettability rapidly and reversibly has been developed by ion exchange of the counterions at the surface of a multilayer film assembled via electrostatic interaction.
Resumo:
A static enclosure method was applied to determine the exchange of dimethyl sulfide (DMS) and carbonyl sulfide (OCS) between the surface of Sphagnum peatlands and the atmosphere. Measurements were performed concurrently with dynamic (flow through) enclosure measurements with sulfur-free air used as sweep gas. This latter technique has been used to acquire the majority of available data on the exchange of S gases between the atmosphere and the continental surfaces and has been criticized because it is thought to overestimate the true flux of gases by disrupting natural S gas gradients. DMS emission rates determined by both methods were not statistically different between 4 and >400 nmol m−2 h−1, indicating that previous data on emissions of at least DMS are probably valid. However, the increase in DMS in static enclosures was not linear, indicating the potential for a negative feedback of enclosure DMS concentrations on efflux. The dynamic enclosure method measured positive OCS flux rates (emission) at all sites, while data using static enclosures indicated that OCS was consumed from the atmosphere at these same sites at rates of 3.7 to 55 nmol m−2 h−1. Measurements using both enclosure techniques at a site devoid of vegetation showed that peat was a source of both DMS and OCS. However, the rate of OCS efflux from decomposing peat was more than counterbalanced by OCS consumption by vegetation, including Sphagnum mosses, and net OCS uptake occurred at all sites. We propose that all wetlands are net sinks for OCS.
Resumo:
Layer-by-layer (LBL) self-assembly is a simple and elegant method of constructing organic-inorganic composite thin films from environmentally benign aqueous solutions. In this paper, we utilize this method to develop proton-exchange membranes for fuel cells. The multilayer film is constructed onto the surface of sulfonated poly(arylene ether ketone) (SPAEK-COOH) membrane by LBL self-assembly of polycation chitosan (CTS) and negatively charged inorganic particle phosphotungstic acid (VIA). The highly conductive inorganic nanoparticles ensure SPAEK-COOH-(CTS/PTA)(n) membranes to maintain high proton conductivity values up to 0.086 S cm(-1) at 25 degrees C and 0.24S cm(-1) at 80 degrees C, which are superior than previous LBL assembled electrolyte systems.
Resumo:
We report a general method for incorporation of nanoparticles into polyelectrolyte multilayer (PEM) thin films by utilizing the excess charges and associated counterions present in the PEMs. Silver ions were introduced directly into multilayers assembled from poly(diallyldimethylammonium chloride) (PDDA) and poly(styrene sulfonate) (PSS), (PDDA/PSS)(n), by a rapid ion exchange process, which were then converted into silver nanoparticles via in situ reduction to create composite thin films. The size and the content of the nanoparticles in the film call be tuned by adjusting the ionic strength in the polyelectrolyte solutions used for the assembly. Spatial control over the distribution of the nanoparticles in the PEM was achieved via the use of multilayer heterostructure containing PDDA/PSS bilayer blocks assembled at different salt concentrations. Because excess charges and counterions are always present in any PEM, this approach can be applied to fabricate a wide variety of composite thin Films based on electrostatic self-assembly.
Resumo:
Counterions present at the surface of polyelectrolyte multilayers (PEMs) were utilized for modulation of surface wettability via ion exchange. The PEM film was dipped in aqueous solutions of different anions, respectively, and the water contact angle of the surface varied from about 10 degrees to 120 degrees, depending on the hydration characteristics of the anion. The ion exchange mechanism was verified by X-ray photoelectron spectroscopy. The process was rapid and reversible. Ionic strength of the polyelectrolyte solution used for preparing the PEMs was found to be crucial to the surface wetting properties and the reversibility and kinetics of the process, and the effects were correlated to the surface density of the excess charge and counterion. This work provides a general, facile and rapid approach of surface property modulation.
Resumo:
Alternate layer-by-layer (L-by-L) polyion adsorption onto gold electrodes coated with chemisorbed cysteamine gave stable, electroactive multilayer films containing calf thymus double stranded DNA (CT ds-DNA) and myoglobin (Mb). Direct, quasi-reversible electron exchange between gold electrodes and proteins involved the Mb heme Fe2+/Fe3+ redox couple. The formation of L-by-L (DNA/Mb), films was characterized by both in situ surface plasmon resonance (SPR) monitoring and cyclic voltammetry (CV). The effective thickness of DNA and Mb monolayers in the (DNA/Mb)l bilayer were 1.0 +/- 0.1 and 2.5 +/- 0.1 mn, corresponding to the surface coverage of similar to65% and similar to89% of its full packed monolayer, respectively. A linear increase of film thickness with increasing number of layers was confirmed by SPR characterizations. At pH 5.5, the electroactive Mb in films are those closest to the electrode surface; additional protein layers did not communicate with the electrode. CV studies showed that electrical communication might occur through hopping conduction via the electrode/base pair/Mb channel, thanks to the DNA-Mb interaction. After the uptake of Zn2+, a special electrochemical behavior, where MbFe(2+) acts as a DNA-binding reduction catalyst in the Zn2+-DNA/Mb assembly, takes place.
Resumo:
A method for the determination of Au, Pt and Pd in geological samples is described. Au, Pt and Pd can be separated and concentrated quantitatively by C-410 anion-exchange resin in the condition of 1.5 mol/L HCl with the adsorption rates of 91.2%, 100.0% and 95.7% respectively. No interference exists from coexisting elements except for Ge(IV), Cr(VI),Ti(IV) in inductively coupled plasma-mass spectrometry. The detection limits are 0.27 mug/L, 0.40 mug/L and 0.19 mug/L for Au, Pt and Pd respectively. The results of these elements in standard geological materials are in agreement with certified values with precision of 19.2% RSD for Au (n = 8), 28.1% RSD for Pt (n=8), and 15.6% RSD for Pd (n=8).
Resumo:
Different sizes of Frechet-type dendrons with a thiol group at the focal point were synthesized, well characterized, and used as building blocks for the preparation of self-assembled monolayers (SAMs) on metal surfaces. From the studies of the kinetic process of dendron thiol self-assembling on gold, it is shown that the dendron thiol assembling proceeds with different adsorption rates depending on the assembly time. In contrast to normal alkanethiols forming highly molecular structures on metal surfaces, the SAMs of polyether dendron form patterned surfaces with nanometer-sized features and in long-range order. It is found that the patterned stripes are closely related to the size of the dendron, and the patterned stripes can be improved by thermal annealing.
Resumo:
The electrochemical behavior of the electroactive self-assembled monolayers (SAMs) of thiol-functionalized viologen, CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is a viologen group, on the gold electrodes is examined by cyclic voltammetry and electrochemical a.c. impedance. A monolayer of viologen is immobilized on the gold electrode surface via the Au-S bond and the normal potentials corresponding to the two successive one-electron transfer processes of the viologen active centers are -310 mV and -652 mV (vs. Ag/AgCl) in 0.1 mol l(-1) phosphate buffer solution (pH 6.96) respectively. These results suggest that the viologen SAMs are stable and well-behaved monolayers. The experimental impedance data corresponding to different forms of viologen group have been fitted to equivalent electrical circuits, and the surface capacitances and resistances have been given. The heterogenous electron transfer rates of the first and the second redox processes are 7.57 s(-1) and 1.49 s(-1) respectively through a.c. impedance.
Resumo:
In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36'N, 101°18'E; 3 250 m a.s.l.) on the Qinghai-Tibetan Plateau, China, during the growing season in 2003, from 20 April to 30 September. This meadow is dominated by formations of Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. During the study period, the meadow was not grazed. The maximum rates of CO2 uptake and release derived from the diurnal course of CO2 flux were -9.38 and 5.02 μmol•m-2•s-1, respectively. The largest daily CO2 uptake was 1.7 g C•m-2•d-1 on 14 July, which is less than half that of an alpine Kobresia meadow ecosystem at similar latitudes. Daily CO2 uptake during the measurement period indicated that the alpine shrubland meadow ecosystem may behave as a sink of atmospheric CO2 during the growing season. The daytime CO2 uptake was correlated exponentially or linearly with the daily photo synthetic photon flux density each month. The daytime average water use efficiency of the ecosystem was 6.47 mg CO2/g H2O. The efficiency of the ecosystem increased with a decrease in vapor pressure deficit.
Resumo:
We used the eddy covariance method to measure the M exchange between the atmosphere and an alpine meadow ecosystem (37degrees29-45'N, 101degrees12-23'E, 3250m a.s.l.) on the Qinghai-Tibetan Plateau, China in the 2001 and 2002 growing seasons. The maximum rates Of CO2 uptake and release derived from the diurnal course Of CO2 flux (FCO2) were -10.8 and 4.4 mumol m(-2) s(-1), respectively, indicating a relatively high net carbon sequestration potential as compared to subalpine coniferous forest at similar elevation and latitude. The largest daily CO2 uptake was 3.9 g cm(-2) per day on 7 July 2002, which is less than half of those reported for lowland grassland and forest at similar latitudes. The daily CO2 uptake during the measurement period indicated that the alpine ecosystem might behave as a sink of atmospheric M during the growing season if the carbon lost due to grazing is not significant. The daytime CO2 uptake was linearly correlated with the daily photosynthetic photon flux density each month. The nighttime averaged F-CO2 showed a positive exponential correlation with the soil temperature, but apparently negative correlation with the soil water content. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel polytetrafluoroethylene (PTFE)-reinforced multilayer self-humidifying composite membrane is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer and nanosized SiO2 supported Pt catalyst imbedded into Nafion as the two side layers. The proton exchange membrane (PEM) fuel cells employing the self-humidifying membrane (20 mu m thick) under dry H-2/O-2 gave a peak power density of 0.95 W/cm(2) and an open-circuit voltage of 1.032 V. The good membrane performance is attributed to hygroscopic Pt-SiO2 catalyst at the two side layers, which results in enhanced anode side self-humidification function and decreased cathode polarization. (c) 2005 The Electrochemical Society.