163 resultados para Seismic processing

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the paper through extensive study and design, the technical plan for establishing the exploration database center is made to combine imported and self developed techniques. By research and repeated experiment a modern database center has been set up with its hardware and network having advanced performance, its system well configured, its data store and management complete, and its data support being fast and direct. Through study on the theory, method and model of decision an exploration decision assistant schema is designed with one decision plan of well location decision support system being evaluated and put into action. 1. Study on the establishment of Shengli exploration database center Research is made on the hardware configuration of the database center including its workstations and all connected hardware and system. The hardware of the database center is formed by connecting workstations, microcomputer workstations, disk arrays, and those equipments used for seismic processing and interpretation. Research on the data store and management includes the analysis of the contents to be managed, data flow, data standard, data QC, data backup and restore policy, optimization of database system. A reasonable data management regulation and workflow is made and the scientific exploration data management system is created. Data load is done by working out a schedule firstly and at last 200 more projects of seismic surveys has been loaded amount to 25TB. 2. Exploration work support system and its application Seismic data processing system support has the following features, automatic extraction of seismic attributes, GIS navigation, data order, extraction of any sized data cube, pseudo huge capacity disk array, standard output exchange format etc. The prestack data can be accessed by the processing system or data can be transferred to other processing system through standard exchange format. For supporting seismic interpretation system the following features exist such as auto scan and store of interpretation result, internal data quality control etc. the interpretation system is connected directly with database center to get real time support of seismic data, formation data and well data. Comprehensive geological study support is done through intranet with the ability to query or display data graphically on the navigation system under some geological constraints. Production management support system is mainly used to collect, analyze and display production data with its core technology on the controlled data collection and creation of multiple standard forms. 3. exploration decision support system design By classification of workflow and data flow of all the exploration stages and study on decision theory and method, target of each decision step, decision model and requirement, three concept models has been formed for the Shengli exploration decision support system including the exploration distribution support system, the well location support system and production management support system. the well location decision support system has passed evaluation and been put into action. 4. Technical advance Hardware and software match with high performance for the database center. By combining parallel computer system, database server, huge capacity ATL, disk array, network and firewall together to create the first exploration database center in China with reasonable configuration, high performance and able to manage the whole data sets of exploration. Huge exploration data management technology is formed where exploration data standards and management regulations are made to guarantee data quality, safety and security. Multifunction query and support system for comprehensive exploration information support. It includes support system for geological study, seismic processing and interpretation and production management. In the system a lot of new database and computer technology have been used to provide real time information support for exploration work. Finally is the design of Shengli exploration decision support system. 5. Application and benefit Data storage has reached the amount of 25TB with thousand of users in Shengli oil field to access data to improve work efficiency multiple times. The technology has also been applied by many other units of SINOPEC. Its application of providing data to a project named Exploration achievements and Evaluation of Favorable Targets in Hekou Area shortened the data preparation period from 30 days to 2 days, enriching data abundance 15 percent and getting information support from the database center perfectly. Its application to provide former processed result for a project named Pre-stack depth migration in Guxi fracture zone reduced the amount of repeated process and shortened work period of one month and improved processing precision and quality, saving capital investment of data processing of 30 million yuan. It application by providing project database automatically in project named Geological and seismic study of southern slope zone of Dongying Sag shortened data preparation time so that researchers have more time to do research, thus to improve interpretation precision and quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The practical application and development of the time-lapse seismic reservoir monitor technology has indicated which has already become one of most important development technologies in seeking the surplus oil distribution and improving the reservoir recovering. The paper, first obtained the rock physics experiment analysis data according to the Bohai Sea loose sandstone in-situ measure technical, and determined the feasibility research of the S oil-field on the time-lapse seismic reservoir monitoring combining with the time-lapse numeric simulation technology, which was used to analyze the time-lapse seismic respond raw of the reservoir parameters change and pointed out the attentive problems during the real time-lapse seismic processing and interpretation. Next, simply introduced the technical link and the effect of the time-lapse mutual constrained fidelity and match processing aiming at the local complex gathering condition, geological condition, development engineering condition. Third, introduced the time-lapse integrated interpretation and the technical system with the innovative key technology that includes the time-lapse difference explanation technology, the time-lapse seismic multi-attributes integrated interpretation technology, and the time-lapse constrained reservoir parameters inversion technology, and so on. Using the time-lapse difference direct explanation technology, directly obtained the surplus oil macroscopic distribution through the difference seismic data; Using the presenting 8 big principles of the sublayer isochronisms comparison, carried on the time-lapse integrated interpretation analysis on the fine sublayer comparison and the thin oil-layer(group) contrast and the oil layer (group); The paper putted up the research, contrast, applications of the multi-sides sensitive attribute analysis and the RBF nerve network on the nearest study algorithm, and predicted the reservoir parameters and the surplus oil distribution with them; Combining with innovative researches and the time-lapse seismic constrained reservoir parameters inversion technology realized the good combination of the seismic and the reservoir engineering. Fourth, under fully analyzing the geology condition, the reservoir condition, the exploit dynamic data, and the seismic data of the S oil-field, and analyzing the time-lapse difference factors with reservoir dynamic exploit data, calibrated the oil-gas saturation change, the pressure change, the water saturation change, and determined the rationality of the time-lapse seismic difference, and finally obtained the surplus oil distribution, the water flood characteristic understanding, reservoir degasification, and pressure drop raw, and so on, which had been used in the well pattern tightening plan proof of the S oil-field development adjustment plan. Finally, the paper summarized the knowledge and understanding of the marine time-lapse seismic integrated interpretation, also had pointed out the further need researched question.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In exploration geophysics,velocity analysis and migration methods except reverse time migration are based on ray theory or one-way wave-equation. So multiples are regarded as noise and required to be attenuated. It is very important to attenuate multiples for structure imaging, amplitude preserving migration. So it is an interesting research in theory and application about how to predict and attenuate internal multiples effectively. There are two methods based on wave-equation to predict internal multiples for pre-stack data. One is common focus point method. Another is inverse scattering series method. After comparison of the two methods, we found that there are four problems in common focus point method: 1. dependence of velocity model; 2. only internal multiples related to a layer can be predicted every time; 3. computing procedure is complex; 4. it is difficult to apply it in complex media. In order to overcome these problems, we adopt inverse scattering series method. However, inverse scattering series method also has some problems: 1. computing cost is high; 2. it is difficult to predict internal multiples in the far offset; 3. it is not able to predict internal multiples in complex media. Among those problems, high computing cost is the biggest barrier in field seismic processing. So I present 1D and 1.5D improved algorithms for reducing computing time. In addition, I proposed a new algorithm to solve the problem which exists in subtraction, especially for surface related to multiples. The creative results of my research are following: 1. derived an improved inverse scattering series prediction algorithm for 1D. The algorithm has very high computing efficiency. It is faster than old algorithm about twelve times in theory and faster about eighty times for lower spatial complexity in practice; 2. derived an improved inverse scattering series prediction algorithm for 1.5D. The new algorithm changes the computing domain from pseudo-depth wavenumber domain to TX domain for predicting multiples. The improved algorithm demonstrated that the approach has some merits such as higher computing efficiency, feasibility to many kinds of geometries, lower predictive noise and independence to wavelet; 3. proposed a new subtraction algorithm. The new subtraction algorithm is not used to overcome nonorthogonality, but utilize the nonorthogonality's distribution in TX domain to estimate the true wavelet with filtering method. The method has excellent effectiveness in model testing. Improved 1D and 1.5D inverse scattering series algorithms can predict internal multiples. After filtering and subtracting among seismic traces in a window time, internal multiples can be attenuated in some degree. The proposed 1D and 1.5D algorithms have demonstrated that they are effective to the numerical and field data. In addition, the new subtraction algorithm is effective to the complex theoretic models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we base on the anisotropic theory and Zoeppritz function of the transmission theory and the law of amplitude versus offset simplify seismic reflection coefficient of different media, analyze the characteristic of the gas or oil saturated stratum or the VTI and HTI models. Discuss the P wave reflection relationship and the meanings of the different parameters. We use measured parameters of a reservoir to simulate the characteristic of the reservoir, study the different effects of stratum saturated with gas or oil and analyze the characteristic of the seismic response of different models which change with different incident angles and different azimuths. Using the field data of logs ,analyze the rock property parameters, build the relationship of logs and parameters by Gassmann theory or empirical function. Calculate the density and the shear modulus and bulk modulus, reconstruct the log curves, calculate shear wave logs and correlate the logs affected by mud and other environmental factors. Finally perform the relationship of the seismic data log of saturated stratum and enhance the ability and reliability in reservoir prediction. Our aim is by the prestack seismic processing to get high solution and amplitude preserved seismic data. Because in incident angle gathers or azimuthal gathers, the low signal to noise ratio and low different covers affect the result of the prestack reservoir prediction. We apply prestack noise erase, cell regularization process and relatively amplitude preservation in the high solution seismic process routine to preserve the characteristic of stratum response, and erase the effects of the noise. In this paper we finished prestack invertion in the BYT survey and fractured reservoir depiction in MB survey. By the invertion and multiple attributes crossplot. we can get the stratum profiles and oil indicator profiles which can predict the distribution of the reservoir and oil. In the MB survey, we get orientation and density of fractured reservoir by the azimuthal seismic amplitude and depict the potential oil and gas reservoir. Prestak invertion works better in distinguishing oil and reservoir.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As active electromagnetic method, field data of CSAMT method follow the equation of diffusion. Propagting in solid earth media, diffusion EM signal has strong attenuation and dispersion, otherwise seismic wave shows weak attenuation and dispersion, therefore the resolution power of CSAMT method is not better than seismic reflection method. However, there is consistence and similarity between EM signal and seismic wave in wave equation, we can apply Kirchhoff integral migration technique, a proven one in seismic method in time domain, to carry out seduo-seismic processing for CSAMT signal in frequency domain so that the attenuation and dispersion could be made compensated in some extent, and the resolution power and interpretation precision of active EM wave could be improved. Satisfying passive homogeneous Helmholtz quation, we proceed with Green theorem and combine the active inhomogenous Helmholtz quation, the Kirchhoff integral formula could be derived. Given practical problems, if we only consider the surface integral value, and assume that the intergral value in other interface is zero, combined with Green theorem in uniform half space, the expression could be simplified, and we can obtain frequency-domain Kirchhoff integral formula in surface, which is also called downward continuation of EM field in frequency domain. With image conditions and energy compensation considered, in order to get image conditions in time domain Fourier inverse transformation in frequency domain can be performed, so we can formulate the active Kirchhoff integral migration expression. At first, we construct relative stratified model, with different frequency series taken into account, then we change the distances between transmitter and reciever, the EM response can be obtained. Analyzing the EM properties, we can clarify near and far zone that can instruct us to carry out transmitter layout in practical application. Combined with field data surveyed in far zone, We perform Kirchhoff integral migration and compare the results with model to interpret. Secondly, with far field EM data, we apply TM mode to get EM response of given 2D model, then apply Kirchhoff integral migration on modelling data and interpret the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Datuming which has not been well solved in complex areas is a long-existing problem in seismic processing and imaging. Theoretically, Wave-equation datuming(WED) works well in the areas with substantial surface topography and areas of complex velocity structure. However, many difficulties still exist in practice. There are three main reasons: (1) It’s difficult to obtain the velocity model. (2) The computational cost is high and the efficiency is low. (3) Reflection waveform distortions are introduced by low S/N ratio in seismic data. The second and third problems are involved in the paper. To improve computational efficiency, DP1 proposed by Fu Li-Yun is applied in WED. Some quantitative and semi-quantitative conclusions of assessing the computational accuracy and efficiency have been obtained by comparing the adaptation of three operators( PS, SSF, DP1) to the surface topography and the lateral velocity variation. Moreover, the impacts of near surface scattering associated with complex surface topography on WED is analyzed theoretically. According to the analysis results, the following conclusions have been obtained. WED is stable and effective when the field data has high S/N ratio and velocity model is accurate. However ,it doesn’t work well when S/N ratio of field data is low. So denoising techniques in process of WED is important for low S/N data. The paper presents the theoretical analysis for the issues facing WED, which is expected to provide a useful reference to the further development of this technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modeling formula based on seismic wavelet can well simulate zero - phase wavelet and hybrid-phase wavelet, and approximate maximal - phase and minimal - phase wavelet in a certain sense. The modeling wavelet can be used as wavelet function after suitable modification item added to meet some conditions. On the basis of the modified Morlet wavelet, the derivative wavelet function has been derived. As a basic wavelet, it can be sued for high resolution frequency - division processing and instantaneous feature extraction, in acoordance with the signal expanding characters in time and scale domains by each wavelet structured. Finally, an application example proves the effectiveness and reasonability of the method. Based on the analysis of SVD (Singular Value Decomposition) filter, by taking wavelet as basic wavelet and combining SVD filter and wavelet transform, a new de - noising method, which is Based on multi - dimension and multi-space de - noising method, is proposed. The implementation of this method is discussed the detail. Theoretical analysis and modeling show that the method has strong capacity of de - noising and keeping attributes of effective wave. It is a good tool for de - noising when the S/N ratio is poor. To give prominence to high frequency information of reflection event of important layer and to take account of other frequency information under processing seismic data, it is difficult for deconvolution filter to realize this goal. A filter from Fourier Transform has some problems for realizing the goal. In this paper, a new method is put forward, that is a method of processing seismic data in frequency division from wavelet transform and reconstruction. In ordinary seismic processing methods for resolution improvement, deconvolution operator has poor part characteristics, thus influencing the operator frequency. In wavelet transform, wavelet function has very good part characteristics. Frequency - division data processing in wavelet transform also brings quite good high resolution data, but it needs more time than deconvolution method does. On the basis of frequency - division processing method in wavelet domain, a new technique is put forward, which involves 1) designing filter operators equivalent to deconvolution operator in time and frequency domains in wavelet transform, 2) obtaining derivative wavelet function that is suitable to high - resolution seismic data processing, and 3) processing high resolution seismic data by deconvolution method in time domain. In the method of producing some instantaneous characteristic signals by using Hilbert transform, Hilbert transform is very sensitive to high - frequency random noise. As a result, even though there exist weak high - frequency noises in seismic signals, the obtained instantaneous characteristics of seismic signals may be still submerged by the noises. One method for having instantaneous characteristics of seismic signals in wavelet domain is put forward, which obtains directly the instantaneous characteristics of seismic signals by taking the characteristics of both the real part (real signals, namely seismic signals) and the imaginary part (the Hilbert transfom of real signals) of wavelet transform. The method has the functions of frequency division and noise removal. What is more, the weak wave whose frequency is lower than that of high - frequency random noise is retained in the obtained instantaneous characteristics of seismic signals, and the weak wave may be seen in instantaneous characteristic sections (such as instantaneous frequency, instantaneous phase and instantaneous amplitude). Impedance inversion is one of tools in the description of oil reservoir. one of methods in impedance inversion is Generalized Linear Inversion. This method has higher precision of inversion. But, this method is sensitive to noise of seismic data, so that error results are got. The description of oil reservoir in researching important geological layer, in order to give prominence to geological characteristics of the important layer, not only high frequency impedance to research thin sand layer, but other frequency impedance are needed. It is difficult for some impedance inversion method to realize the goal. Wavelet transform is very good in denoising and processing in frequency division. Therefore, in the paper, a method of impedance inversion is put forward based on wavelet transform, that is impedance inversion in frequency division from wavelet transform and reconstruction. in this paper, based on wavelet transform, methods of time - frequency analysis is given. Fanally, methods above are in application on real oil field - Sansan oil field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis mainly studies the technologies of 3-D seismic visualization and Graphic User Interface of seismic processing software. By studying Computer Graphics and 3-D geological modeling, the author designs and implements the visualization module of seismic data processing software using OpenGL and Motif. Setting seismic visualization flow as the subject, NURBS surface approximation and Delaunay Triangulation as the two different methods, the thesis discusses the key algorithms and technologies of seismic visualization and attempts to apply Octree Space Partitioning and Mip Mapping to enhance system performance. According to the research mentioned above, in view of portability and scalability, the author adopts Object-oriented Analysis and Object-oriented Design, uses standard C++ as programming language, OpenGL as 3-D graphics library and Motif as GUI developing tool to implement the seismic visualization framework on SGI Irix platform. This thesis also studies the solution of fluid equations in porous media. 2-D alternating direction implicit procedure has been turned into 3-D successive over relaxation iteration, which possesses such virtues as faster computing speed, faster convergence rate, better adaptability to heterogeneous media and less memory demanding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the development of oil and gas exploration, the exploration of the continental oil and gas turns into the exploration of the subtle oil and gas reservoirs from the structural oil and gas reservoirs in China. The reserves of the found subtle oil and gas reservoirs account for more than 60 percent of the in the discovered oil and gas reserves. Exploration of the subtle oil and gas reservoirs is becoming more and more important and can be taken as the main orientation for the increase of the oil and gas reserves. The characteristics of the continental sedimentary facies determine the complexities of the lithological exploration. Most of the continental rift basins in East China have entered exploration stages of medium and high maturity. Although the quality of the seismic data is relatively good, this areas have the characteristics of the thin sand thickness, small faults, small range of the stratum. It requests that the seismic data have high resolution. It is a important task how to improve the signal/noise ratio of the high frequency of seismic data. In West China, there are the complex landforms, the deep embedding the targets of the prospecting, the complex geological constructs, many ruptures, small range of the traps, the low rock properties, many high pressure stratums and difficulties of boring well. Those represent low signal/noise ratio and complex kinds of noise in the seismic records. This needs to develop the method and technique of the noise attenuation in the data acquisition and processing. So that, oil and gas explorations need the high resolution technique of the geophysics in order to solve the implementation of the oil resources strategy for keep oil production and reserves stable in Ease China and developing the crude production and reserves in West China. High signal/noise ratio of seismic data is the basis. It is impossible to realize for the high resolution and high fidelity without the high signal/noise ratio. We play emphasis on many researches based on the structure analysis for improving signal/noise ratio of the complex areas. Several methods are put forward for noise attenuation to truly reflect the geological features. Those can reflect the geological structures, keep the edges of geological construction and improve the identifications of the oil and gas traps. The ideas of emphasize the foundation, give prominence to innovate, and pay attention to application runs through the paper. The dip-scanning method as the center of the scanned point inevitably blurs the edges of geological features, such as fault and fractures. We develop the new dip scanning method in the shap of end with two sides scanning to solve this problem. We bring forward the methods of signal estimation with the coherence, seismic wave characteristc with coherence, the most homogeneous dip-sanning for the noise attenuation using the new dip-scanning method. They can keep the geological characters, suppress the random noise and improve the s/n ratio and resolution. The rutine dip-scanning is in the time-space domain. Anew method of dip-scanning in the frequency-wavenumber domain for the noise attenuation is put forward. It use the quality of distinguishing between different dip events of the reflection in f-k domain. It can reduce the noise and gain the dip information. We describe a methodology for studying and developing filtering methods based on differential equations. It transforms the filtering equations in the frequency domain or the f-k domain into time or time-space domains, and uses a finite-difference algorithm to solve these equations. This method does not require that seismic data be stationary, so their parameters can vary at every temporal and spatial point. That enhances the adaptability of the filter. It is computationally efficient. We put forward a method of matching pursuits for the noise suppression. This method decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. It can extract the effective signal from the noisy signal and reduce the noise. We introduce the beamforming filtering method for the noise elimination. Real seismic data processing shows that it is effective in attenuating multiples and internal multiples. The s/n ratio and resolution are improved. The effective signals have the high fidelity. Through calculating in the theoretic model and applying it to the real seismic data processing, it is proved that the methods in this paper can effectively suppress the random noise, eliminate the cohence noise, and improve the resolution of the seismic data. Their practicability is very better. And the effect is very obvious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model has been developed for simulating the rapid solidification processing (RSP) of Ni-Al alloy in order to predict the resultant phase composition semi-quantitatively during RSP. The present model couples the initial nucleation temperature evaluating method based on the time dependent nucleation theory, and solidified volume fraction calculation model based on the kinetics model of dendrite growth in undercooled melt. This model has been applied to predict the cooling curve and the volume fraction of solidified phases of Ni-Al alloy in planar flow casting. The numerical results agree with the experimental results semi-quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the earthquake recurrence and the characteristics of earthquake series, rupture tests of rock samples and plexiglass samples were made. On rock samples, a number of acoustic emission (AE) and strain measuring points were deployed; the load was one side direct shear. The variation characteristics of AE and strain at different detecting points around the extra large fracture were observed and studied. On plexiglass samples, a series of inclined cracks were prefabricated by a small-scale compressive testing machine. The samples were then loaded on a shockproof platen, when the samples were loaded, the stress intensity factor (SIF) was determined by the laser interferometric technique and shadow optical method of caustics. The fracture conditions such as material toughness around the extra large fracture were also studied. From those experimental results and the theory of fracture mechanics, the earthquake recurrence period and the trend of post-seismic development were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the effects of both natural convection and forced flows on solid–liquid interface morphology during upward Bridgman solidification of metallic alloys. Experiments were carried out on Al–3.5wt% Ni alloy, for a cylindrical sample. The influence of natural convection induced by radial thermal gradient on solidified microstructure was first analyzed as a function of the pulling rate. Then, the influence of axial vibration on solidification microstructure was experimentally investigated by varying vibration parameters (frequency and amplitude). Experimental results demonstrated that vibrations could be used to either attenuate fluid flow in the melt and obtain a uniform dendritic pattern or to promote a fragmented dendritic microstructure. However, no marked effect was observed for cellular growth. This pointed out the critical role of the mushy zone in the interaction between fluid flow and solidification microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar plasma technology was used to produce ceramic hardened layers of Al2O3-40% mass Ni composite powders on stainless steel substrates. In order to investigate the influences of processing conditions on the morphologies of the surface modified layers, two different powder-feeding methods were tested, one with carrier gas called the powder injection method, and the other without carrier gas called powder transfers method. The microscopic investigations demonstrate that the cross-section of the clad layers consists of two distinct microstructural regions, in which the Al2O3 phases exhibit different growth mechanisms. When the powder transfers method is adopted, the number density and volume fraction of the Al2O3 particles increase considerably and their distributions exhibit zonal periodical characteristics. When the powder-feeding rate increases, the microstructure of the Al2O3 phases changes from a small globular to a long needle shape. Finite element simulations show that the transient thermo-physical features of the pool substances, such as solidification rate and cooling rate, influence strongly the mechanisms of the nucleation and the directional growth of the Al2O3 phases in the thermal processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional model has been developed based on the experimental results of stainless steel remelting with the laminar plasma technology to investigate the transient thermo-physical characteristics of the melt pool liquids. The influence of the temperature field, temperature gradient, solidification rate and cooling rate on the processing conditions has been investigated numerically. Not only have the appropriate processing conditions been determined according to the calculations, but also they have been predicted with a criterion established based on the concept of equivalent temperature area density (ETAD) that is actually a function of the processing parameters and material properties. The comparison between the resulting conditions shows that the ETAD method can better predict the optimum condition.