2 resultados para Secretory cells

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BALB/c mice were immunized intragastrically with human sperm. Cells from the Peyer's patches and spleens of the immunized mice were for the preparation of hybridomas secreting antisperm monoclonal IgA (mcIgA). The specific ratio of IgA-secreting cells in Peyer's patches was much higher than that in spleen. The binding site on human sperm of 9 of 19 mcIgA was in the post-acrosomal region using an immunofluorescent assay. Two of eight selected mcIgA caused strong human sperm agglutination and three of them produced significant inhibition of mouse in vitro fertilization. No mcIgA tested caused obvious human sperm immobilization or inhibited mouse in vivo fertilization. In vitro assembly of selected mcIgA in ascites with mouse secretory component (SC) caused no significant changes in effects on sperm function and in vitro fertilization. By use of Western blotting, dimer or higher polymers were demonstrated in all selected mcIgAs and corresponding protein antigens in 6 of 8 selected mcIgAs. These results suggest that human sperm function may be inhibited and fertilization rate reduced by specific secretory IgA to human sperm and that secretory immunity to protein antigens of human sperm could be induced by intragastrointestinal immunization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal beta/gamma-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, Delta GRT1 Delta GRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in Delta GRT1 Delta GRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from Delta GRT1 Delta GRT2 cells appear less adhesive than those from the wild type.