30 resultados para Secretogranin-ii
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, a theoretical model proposed in Part I (Zhu et al., 2001a) is used to simulate the behavior of a twin crank NiTi SMA spring based heat engine, which has been experimentally studied by Iwanaga et al. (1988). The simulation results are compared favorably with the measurements. It is found that (1) output torque and heat efficiency decrease as rotation speed increase; (2) both output torque and output power increase with the increase of hot water temperature; (3) at high rotation speed, higher water temperature improves the heat efficiency. On the contrary, at low rotation speed, lower water temperature is more efficient; (4) the effects of initial spring length may not be monotonic as reported. According to the simulation, output torque, output power and heat efficiency increase with the decrease of spring length only in the low rotation speed case. At high rotation speed, the result might be on the contrary.
Resumo:
本文以对热工模具进行失效分析的基础上,利用激光熔覆技术,在5CrMnMo基础上设计并制备强韧兼备的抗高温磨损涂层。
Resumo:
The phase behavior of liquid crystalline in the ternary system of dodecyl dimethyl ammonium hydroxyl propyl sulfonate(DDAHPS)/1-pentanol(C5H11OH)/water deuteron (D2O) has been investigated by polarizing optical microscopy, H-2 NMR spectroscopy methods. The results indicate that two kinds of liquid crystals (the lamellar, and the hexagonal) exist in the liquid crystalline phase region. In this paper, we also use the polarized Raman spectroscopy method to measure the values of the order/disorder parameters and the values of the environment polarity parameters for the samples selected from the liquid crystalline phase region, and compare these two parameters of the samples with those of solid state DDAHPS and liquid state pentan-1-ol.
Resumo:
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
Teracluster LSSC-II - Its Designing Principles and Applications in Large Scale Numerical Simulations
Resumo:
The teracluster LSSC-II installed at the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences is one of the most powerful PC clusters in China. It has a peek performance of 2Tflops. With a Linpack performance of 1.04Tflops, it is ranked at the 43rd place in the 20th TOP500 List (November 2002), 51st place in the 21st TOP500 List (June 2003), and the 82nd place in the 22nd TOP500 List (November 2003) with a new Linpack performance of 1.3Tflops. In this paper, we present some design principles of this cluster, as well as its applications in some largescale numerical simulations.
Resumo:
讨论了光波在水平大气湍流中传输时的情况。计算结果表明自适应光学系统的补偿效果与光波传播路径上的横向风有很大的关系。大气湍流的强度越大, 自适应光学系统的截止频率越高, 横向风的影响也越大。计算结果还表明在相同的r0 或者相同的大气湍流强度下, 球面波所受大气扰动的自适应光学补偿效果受横向风的影响要比平面波的厉害。本文还将理论分析的结果和数值模拟的结果进行了比较, 表明数值模拟结果受横向风的影响比理论分析结果受横向风的影响大。最后, 文中分析了以上现象并对此作出了合理的解释。
Resumo:
Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.
Resumo:
A recoverable plate impact testing technology has been developed for studying fracture mechanisms of mode II crack. With this technology, a single duration stress pulse with submicrosecond duration and high loading rates, up to 10(8) MPam(1/2)s(-1), can be produced. Dynamic failure tests of Hard-C 60# steel were carried out under asymmetrical impacting conditions with short stress-pulse loading. Experimental results show that the nucleation and growth of several microcracks ahead of the crack tip, and the interactions between them, induce unsteady crack growth. Failure mode transitions during crack growth, both from mode I crack to mode II and from brittle to ductile fracture, were observed. Based on experimental observations, a discontinuous crack growth model was established. Analysis of the crack growth mechanisms using our model shows that the shear crack extension is unsteady when the extending speed is between the Rayleigh wave speed c(R) and the shear wave speed c(S). However, when the crack advancing speed is beyond c(S), the crack grows at a steady intersonic speed approaching root 2c(S). It also shows that the transient mechanisms, such as nucleation, growth, interaction and coalescence among microcracks, make the main crack speed jump from subsonic to intersonic and the steady growth of all the subcracks causes the main crack to grow at a stable intersonic speed.
Resumo:
In the laser induced thermal fatigue simulation test on pistons, the high power laser was transformed from the incident Gaussian beam into a concentric multi-circular pattern with specific intensity ratio. The spatial intensity distribution of the shaped beam, which determines the temperature field in the piston, must be designed before a diffractive optical element (DOE) can be manufactured. In this paper, a reverse method based on finite element model (FEM) was proposed to design the intensity distribution in order to simulate the thermal loadings on pistons. Temperature fields were obtained by solving a transient three-dimensional heat conduction equation with convective boundary conditions at the surfaces of the piston workpiece. The numerical model then was validated by approaching the computational results to the experimental data. During the process, some important parameters including laser absorptivity, convective heat transfer coefficient, thermal conductivity and Biot number were also validated. Then, optimization procedure was processed to find favorable spatial intensity distribution for the shaped beam, with the aid of the validated FEM. The analysis shows that the reverse method incorporated with numerical simulation can reduce design cycle and design expense efficiently. This method can serve as a kind of virtual experimental vehicle as well, which makes the thermal fatigue simulation test more controllable and predictable. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.
Resumo:
A kinetic model has been developed for the prediction of the concentration gelds in an rf plasma reactor. A sample calculation for a SiCl4/H2 system is then performed. The model considers the mixing processes along with the kinetics of seven reactions involving the decomposition of these reactants. The results obtained are compared to those assuming chemical equilibrium. The predictions indicate that an equilibrium assumption will result in lower predicted temperature fields in the reactor. Furthermore, for the chemical system considered here, while differences exist between the concentration fields obtained by the two models, the differences are not substantial.
Resumo:
对生物模式形成机制的探讨一直是生命科学特别是发育生物学的重要课题。我们曾应用元胞自动机方法建立了一个从单细胞及其行为到细胞与细胞、细胞与胞外环境相互作用下生物模式的形成模型。本文应用此模型,同时考虑到营养物和代谢对细胞繁殖的影响,模拟菌落的生长模式。
Resumo:
A recoverable plate impact testing technology has been used for studying the growth mechanisms of mode II crack. The results show that interactions of microcracks ahead of a crack tip cause the crack growth unsteadily. Failure mode transitions of materials were observed. Based on the observations, a discontinuous crack growth model was established. Analysis shows that the shear crack grows unsteady as the growth speed is between the Rayleigh wave speed c(R) and the shear wave speed c(s); however, when the growth speed approaches root 2c(s), the crack grows steadily. The transient microcrack growth makes the main crack speed to jump from subsonic to intersonic and the steady growth of all the sub-cracks leads the main crack to grow stably at an intersonic speed.