9 resultados para Seasonal time series

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new technique, wavelet network, is introduced to predict chaotic time series. By using this technique, firstly, we make accurate short-term predictions of the time series from chaotic attractors. Secondly, we make accurate predictions of the values and bifurcation structures of the time series from dynamical systems whose parameter values are changing with time. Finally we predict chaotic attractors by making long-term predictions based on remarkably few data points, where the correlation dimensions of predicted attractors are calculated and are found to be almost identical to those of actual attractors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

we propose here a local exponential divergence plot which is capable of providing a new means of characterizing chaotic time series. The suggested plot defines a time dependent exponent LAMBDA and a ''plus'' exponent LAMBDA+ which serves as a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time and the largest Lyapunov exponent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern process industry, it is often difficult to analyze a manufacture process due to its umerous time-series data. Analysts wish to not only interpret the evolution of data over time in a working procedure, but also examine the changes in the whole production process through time. To meet such analytic requirements, we have developed ProcessLine, an interactive visualization tool for a large amount of time-series data in process industry. The data are displayed in a fisheye timeline. ProcessLine provides good overviews for the whole production process and details for the focused working procedure. A preliminary user study using beer industry production data has shown that the tool is effective.