28 resultados para Scientific culture

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efforts involved in developing a small satellite for scientific purposes in China in recent years are introduced in the present paper. The project is arranged on a case to case principle depending upon requirements and financial support. The space technology of a satellite and rockets, which have been developed over a relatively longer period in China, have been transferred to the scientific research of small satellites for improvement of the quality requirements. The surplus payloads of the rocket and satellite are used as the payloads of the small satellite and scientific experiments at a low cost. As an example, the project of balloon satellites for atmospheric research was successfully completed in 1991. The experience of the project management is of great benefit for further organization and arrangement of other projects. Opportunities exist for surplus payloads to be used in the future, and a small satellite for magnetospheric research will be launched in 1993.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be interconnected with seeded osteoblasts on the bone surface. Using a low-level medium perfusion system, the viability of in situ osteocytes in bone explants was maintained for up to 4 weeks, and functional gap junction intercellular communication (GJIC) was successfully established between osteocytes and seeded primary osteoblasts. Using this novel co-culture model, the effects of dynamic deformational loading, GJIC, and prostaglandin E-2 (PGE(2)) release on functional bone adaptation were further investigated. The results showed that dynamical deformational loading can significantly increase the PGE(2) release by bone cells, bone formation, and the apparent elastic modulus of bone explants. However, the inhibition of gap junctions or the PGE(2) pathway dramatically attenuated the effects of mechanical loading. This 3D trabecular bone explant co-culture model has great potential to fill in the critical gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to regulate osteoblasts function and skeletal integrity as reflected in its mechanical properties.