4 resultados para Saxophone and piano music, Arranged

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

目的 研究古琴(一种古老的中国乐器)和钢琴音乐对认知的影响.方法 记录和分析了中国被试在两种音乐背景(古琴音乐,钢琴音乐)下完成听觉oddball任务的行为和事件相关电位(event-related potential,ERP)数据.结果 中国被试在本土文化的音乐环境(古琴音乐)下,前额区诱导出更大的P300,这一结果和已有的相关研究是相符的.同时,不同音乐背景对ERP产生的影响在N1和LPC(包括P300和P500)上也表现出差别:中国被试在古琴音乐背景下比钢琴音乐背景下表现出更多的右前侧颞叶的参与.结论 因为古琴音乐的五声调式和汉语发音的音调具有对应关系,因此我们推断在古琴音乐下所表现出的这种特性与被试的汉语环境有关.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare the effects of music from different cultural environments (Guqin: Chinese music; piano: Western music) on crossmodal selective attention, behavioral and event-related potential (ERP) data in a standard two-stimulus visual oddball task were reco

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Special thanks to Christopher Blair and Mumtaz Baig for their suggestions. This work was supported by National Basic Research Program of China (973 Program, 2007CB411600), National Natural Science Foundation of China (30621092), and Bureau of Science and Technology of Yunnan Province.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic 0, evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.