270 resultados para SUPPORTED COBALT CATALYSTS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attractive Fischer-Tropsch catalyst was prepared using an activated carbon as carrier to support cobalt based catalysts. Zr promoted Co/AC catalysts remarkably enhanced the activity and the selectivity toward diesel distillates and lower the methane selectivity. This modification may be attributed to specific behavior of activated carbon with high surface area and the weak interaction between metallic cobalt active sites and activated carbon. It was emphasized that the pore size of activated carbon played a very important role in restricting the growth of carbon chain to wax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cobalt carbide (Co2C) species was formed in some activated carbon supported cobalt-based (Co/AC) catalysts during the activation of catalysts. It was found that the activity of Fischer-Tropsch reaction over Co-based catalysts decreased due to the formation of cobalt carbide species. Some promoters and pretreatment of activated carbon with steam could restrain the formation of cobalt carbide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid phase hydrodechlorination of chlorinated benzenes was studied over Ni/active carbon (Ni/AC), Ni/gamma-Al2O3, Ni/SiO2 and Raney Ni. The complete dechlorination of chlorobenzene (ClBz) was realized at 333-343 K on Ni/AC under hydrogen atmosphere of 1.0 MPa in the presence of alkaline hydroxide. Dichloro- and trichlorobenzenes were also hydrodechlorinated with 50-95% yields of benzene under the similar conditions, as above. The reaction follows zero-order to ClBz concentration and 1.9 order to hydrogen pressure. The reaction does not proceed in the absence of alkaline hydroxide, suggesting the complete coverage of active nickel surface with produced chlorine and the removal of the chlorine ion with hydroxide ion as a rate-limiting step. The active catalysts were characterized by H-2 chemisorption and transmission electron microscopy techniques. The apparent activity strongly depends on the active area of nickel on catalyst surface. (C) 2004 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphitic-nanofilaments (GNFs) supported ruthenium catalysts were prepared and characterized by NZ physisorption, X-ray diffraction (XRD), transmission electron microscope (TEM) and temperature programmed reduction-mass spectroscopy (TPR-MS) and used for ammonia synthesis in a fixed bed microreactor. The TEMs of the Ru/GNFs and Ru-Ba/GNFs catalysts indicate that the Ru particles are in the range of 2-4 nm, which is the optimum size of Ru particles for the maximum number of B5 type sites. The activity of Ru-Ba/GNFs catalysts is higher than that of Ru-Ba/AC by about 25%. The methanation reaction on the Ru/GNFs catalyst is remarkably inhibited compared with a Ru/AC catalyst. High graphitization of GNFs is likely to be the reason for the high resistance to the methanation reaction. The power rate law for ammonia synthesis on Ru-Ba/GNFs catalysts can be expressed by r = Kp(NH3)(-0.4) P-N2(0.8) P-H2(-0.7), indicating that H-2 is an inhibitor for N-2 activation on the catalyst. Catalysts with the promoters Ba, K and Cs show large differences in activity for ammonia synthesis. The catalyst promoted with Ba (Ba/Ru = 0.2 molar ratio) was found to be the most active, whereas that with a K promoter was the least active. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon black and titanium dioxide supported iron tetraphenylporphyrin (FeTPP/TiO2/C) catalysts for oxygen reduction reaction (ORR) were prepared by sol-gel and precipitation methods followed by a heat-treatment at temperatures of 400-1000 degrees C. The FeTPP/C and TiO2/C were also studied for comparison. The FeTPP/TiO2/C pyrolyzed at 700 degrees C exhibits significantly improved stability while maintaining high activity towards ORR in comparison with the FeTPP/C counterpart. The electrochemical study combined with XRD, XPS, and SEM/EDX analyses revealed that the appropriate dispersion of TiO2 on the surface of FeTPP/TiO2/C catalysts, which depending on heat-treatment temperature, plays a crucial role in determining the activity and stability of catalysts.