138 resultados para SUPEREXCHANGE INTERACTION

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrate in theory that it is possible to all-electrically manipulate the RKKY interaction in a quasi-one-dimensional electron gas embedded in a semiconductor heterostructure, in the presence of Rashba and Dresselhaus spin-orbit interaction. In an undoped semiconductor quantum wire where intermediate excitations are gapped, the interaction becomes the short-ranged Bloembergen-Rowland superexchange interaction. Owing to the interplay of different types of spin-orbit interaction, the interaction can be controlled to realize various spin models, e.g., isotropic and anisotropic Heisenberg-like models, Ising-like models with additional Dzyaloshinsky-Moriya terms, by tuning the external electric field and designing the crystallographic directions. Such controllable interaction forms a basis for quantum computing with localized spins and quantum matters in spin lattices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The SWAP operation in a two-qubit Heisenberg model in the presence of Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interaction is investigated. 1t is shown that the SWAP operation can be implemented for some kinds of DM coupling and the influence of DM couplings is divided into different cases. The conditions of the DM coupling under which the SWAP operation is feasible are established. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic anisotropy in ytterbium iron garnet (YbIG) is theoretically investigated under high magnetic fields (up to 160 kOe). According to the crystal field effect in ytterbium gallium garnet (YbGaG), a detailed discussion of crystal-field interaction in YbIG is presented where a suitable set of crystal-field parameters is obtained. Meanwhile, the influences of nine crystal-field parameters on the crystal-field energy splitting are analyzed. On the other hand, considering the ytterbium-iron (Yb-Fe) superexchange interaction of YbIG, the spontaneous magnetization is calculated at different temperatures for the [111] direction. In particular, we demonstrate that the Wesis constant lambda is the function of 1/T in YbIG. In addition, the field dependences of the magnetization for the [110] and [111] directions are theoretically described where a noticeable anisotropy can be found. Our theory further confirms the great contribution of anisotropic Yb-Fe superexchange interaction to the anisotropy of the magnetization in YbIG. Moreover, our theoretical results are compared with the available experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the basis of the spin and valence state equilibria and superexchange interaction of the various cobalt ions in LaCoO3, an approximate semiempirical formula has been proposed and used to calculate magnetic susceptibilities of LaCoO3 over a wide temperature range (100-1200 K). The results indicate that there are thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion, the high spin state Co3+ (t2g4e(g)2) ion, the Co(II) (t2g6e(g)1) ion and the Co(IV) (t2g5e(g)0) ion in LaCoO3. The energy difference between the low spin state Co(III) and the high spin state Co3+ is about 0.006 eV. The content of the low spin state Co(III) ion is predominant in LaCoO3 and the content of the high spin state Co3+ ion varies with temperature, reaching a maximum at about 350 K, then decreasing gradually with increasing temperature. At low temperature the contents of the Co(II) ion and the Co(IV) ion in LaCoO3 are negligible, while above 200 K the contents of both the Co(II) ion and the Co(IV) ion increase with increasing temperature; however, the content of the Co(II) ion always is larger than that of the Co(IV) ion at any temperature. These calculated results are in good agreement with experimental results of the Mossbauer effect, magnetic susceptibility and electrical conductivity of LaCoO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diameters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid, respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the trajectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time. The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behavior of two drops are basically consistent with the theoretical predictions, there are also apparent differences. 2006 Elsevier Ltd. All rights reserved. Keywords: Thermocapillary migration; Drop; Interaction; Oscillation 1. Introduction A bubble or drop will move when placed in another fluid with temperature gradient. This motion happens as a consequence of the variation of interfacial tension with temperature. Such a phenomenon is already known as Marangoni migration problem. With the development of microgravity science, bubble dynamics and droplet dynamics became a hot point problem of research because this investigation is very important for basic research as well as for applications in reduced gravity environment, such as space material science, chemical engineering and so on. Young et al. first investigated the thermocapillary migration of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increased interest in measuring kinetic rates, lifetimes, and rupture forces of single receptor/ligand bonds. Valuable insights have been obtained from previous experiments attempting such measurements. However, it remains difficult to know with sufficient certainty that single bonds were indeed measured. Using exemplifying data, evidence supporting single-bond observation is examined and caveats in the experimental design and data interpretation are identified. Critical issues preventing definitive proof and disproof of single-bond observation include complex binding schemes, multimeric interactions, clustering, and heterogeneous surfaces. It is concluded that no single criterion is sufficient to ensure that single bonds are actually observed. However, a cumulative body of evidence may provide reasonable confidence. 0 2002 Biomedical Engineering Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80mm in inner diameter, 10mm in wall thickness and 5360mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients a and 0 are quantitatively determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically. Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of the expansion coefficient and the perturbation wave number, increases greatly independent of the 'stationary' turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nanostructured surface layer was formed on an Inconel 600 plate by subjecting it to surface mechanical attrition treatment at room temperature. Transmission electron microscopy and high-resolution transmission electron microscopy of the treated surface layer were carried out to reveal the underlying grain refinement mechanism. Experimental observations showed that the strain-induced nanocrystallization in the current sample occurred via formation of mechanical microtwins and subsequent interaction of the microtwins with dislocations in the surface layer. The development of high-density dislocation arrays inside the twin-matrix lamellae provides precursors for grain boundaries that subdivide the nanometer-thick lamellae into equiaxed, nanometer-sized grains with random orientations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standing soliton was studied by numerical simulation of ifs governing equation, a cubic Schrodiger equation with a complex conjugate term, which was derived by Miles and was accepted. The value of linear damping in Miles equation was studied. Calculations showed that linear damping effects strongly on the formation of a standing soliton and Laedke and Spatschek stable condition is only a necessary condition, but not a sufficient one. The interaction of two standing solitons was simulated. Simulations showed that the interaction pattern depends on system parameters. Calculations for the different initial condition and its development indicated that a stable standing soliton can be fanned only for proper initial disturbance, otherwise the disturbance will disappear or develop into several solitons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging ellipsometry was combined with electrochemical methods for studying electrostatic interactions of protein and solid surfaces. The potential of zero charge for gold-coated silicon wafer/solution interfaces wad determined by AC impedance method. The potential of the gold-coated silicon wafer was controlled at the potential of zero charge, and the adsorption of fibrinogen on the potential-controlled and non-controlled surfaces was measured in real time at the same time by imaging ellipsometry The effect of electrostatic interaction was studied by comparing the difference between the potential of controlled adsorption and the Potential of noncontrolled adsorption. It was shown that the rate of fibrinogen adsorption on the potentiostatic surface was faster than that on the nonpotentiostatic surface. The electrostatic influence on fibrinogen adsorption on the gold-coated silicon wafer was weak, so the hydrophobic interaction should be the major affinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liu Qingquan, Singh V.P