25 resultados para SUBDUCTION ZONES
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The serpentinized peridotites overlying the subducted zones in the Izu-Bonin-Mariana (IBM) arc system have been interpret as the cause of the low-velocity layer identified beneath the IBM froearc, in turn few earthquakes occurred along the plate boundary. Chrysotile, which is a low temperature and highly hydrated phase of serpentine with low frictional strength, has been suggested as the low velocity material in the serpentinized peridotites, besides, brucite is inferred to be likely conducive to stable sliding. However, such idea encounters challenging in our serpentinized peridotites from the southern Mariana forearc, which absent both the above minerals. The presence of talc, which characterized by its weak, low-friction and inherently stable sliding behavior, provides new clue. Here we report the occurrence of talc in serpentinized peridotites collected from the landward trench slope of the southern Mariana forearc. We infer that talc is mainly forming as a result of the reaction of serpentine minerals with silica-saturated fluids released from the subducting slab, and talc also occurs as talc veins sometimes. Due to its unique physical properties, talc may therefore play a significant role in aseismic slip in the IBM subduction zone.
Resumo:
The subduction zone is an important site of the fluid activity and recycling of chemical elements. The fluid characteristic of deep subduction zones is a top scientific problem attracting the petrologists, geochemists and tectonists. In this dissertation, the characteristics of fluid activity within a deep subduction zone have been explored on the basis of the studies on the petrography, mineral chemistry, fluid inclusions, geochemistry and metamorphic P–T conditions of the omphacite-bearing high-pressure veins and related hosts from the low-temperature/high-pressure metamorphic belt in southwestern Tianshan, China. Multiple high-pressure veins are exposed in host eclogites and blueschists. The veins are composed predominantly of omphacite, garnet, quartz, and other minerals. Some veins contain cm-sized rutiles. In general, the vein can be divided into three types, the ‘in situ dehydration’ vein, the ‘external transport’ vein and the ‘composite’ vein. The omphacites within the veins and related host rocks contain lots of two-phase or three-phase primary fluid inclusions. The final melting temperature (Tfm) of fluid inclusions varies mainly from -0.6 to -4.3 °C, the homogeneous temperature (Th) varies from 185 to 251 °C, the salinity varies from 1.1 to 6.9 wt.% NaCl equivalent and the density varies from 0.81 to 0.9 g/cm3. The fluids were released under the conditions of T = 520–580°C and P = 15–19 kbar at blueschist facies to eclogite facies transition. The fluids include not only Li, Be, LILE, La, Pb-enriched and HFSE- and HREE-depleted aqueous fluids but also HFSE (Ti-Nb-Ta)-rich aqueous fluids. The complex composed of aluminosilicate polymers and F was the catalyst which had caused the Ti-Nb-Ta to be dissolved into the fluids. During the transport of the LILE-rich and HFSE- and HREE-poor fluids, they can exchange some chemical elements with country rocks and leach some trace elements in some extent. The rutile could be precipitated from the HFSE (Ti-Nb-Ta)-rich aqueous fluids when CO2 was added into the fluids. The host rocks could obtain some elements, such as Ca, Cs, Rb, Ba and Th, from the external fluids. The fluids with complex composition had been released within the deep subduction zone (>50 km) in Early Carboniferous during the subduction of the South Tianshan Ocean under the Yili–Central Tianshan Plate. The results obtained in this dissertation have made new progress compared with the published data (e.g. Tatsumi, 1989; Becker et al., 1999; Scambelluri and Philippot, 2001; Manning, 2004; Hermann et al., 2006; Spandler and Hermann, 2006).
Resumo:
Both the global and regional P wave tomographic studies have revealed significant deep structural heterogeneities in subduction zone regions. In particular, low-velocity anomalies have been observed beneath the descending high-velocity slabs in a number of subduction zones. The limited resolution at large depths and possible trade-off between the high and low velocities, however, make it difficult to substantiate this feature and evaluate the vertical extent of the low-velocity structure. From broadband waveform modeling of triplicated phases near the 660-km discontinuity for three deep events, we constrained both the P and SH wave velocity structures around the base of the upper mantle in northeast Asia. For the two events beneath the southern Kurile, the rays traveled through the lowermost transition zone and uppermost lower mantle under the descending Pacific slab. Our preferred models consistently suggest normal-to-lower P and significantly low SH velocities above and below the 660-km discontinuity extending to about 760-km depth compared with the global IASP91 model, corroborating previous observations for a slow structure underneath the slab. In contrast, both high P and SH velocity anomalies are shown in our preferred models for the Japan subduction zone region, likely reflecting the structural feature of a slab stagnant above the 660-km discontinuity. The velocity jumps across the 660-km discontinuity were found to be on average 4.5% and 7% for P and S waves under the south Kurile, and 3% and 6% under the Japan subduction zone. The respective velocity contrasts in the two regions are consistent with mineralogical models for colder slab interior and hotter under-slab areas. Based on mineral physics data, the depth-averaged ~1.5% P and ~2.5% SH velocity differences in the depth range of 560-760 km between the two regions could be primarily explained by a 350~450K temperature variation, although the presence of about 0.5wt%~1wt% water might also contribute to the subtle velocity variations near the base of the transition zone in the southern Kurile. From our modeling results, we speculate that the slow structure in the southern Kurile may be correlated to the low velocity zone observed previously around the 410-km discontinuity under Northern Honshu. Both are probably associated with a thermal anomaly rooted in the lower mantle beneath the subduction zone in northeast Asia.
Resumo:
With the improving of mantle convection theory, the developing of computing method and increasing of the measurement data, we can numerically simulate more clearly about the effects on some geophysical observed phenomenons such as the global heat flow and global lithospheric stress field in the Earth's surface caused by mantle convection, which is the primary mechanism for the transport of heat from the Earth's deep interior to its surface and the underlying force mechanism of dynamics in the Earth.Chapter 1 reviews the historical background and present research state of mantle convection theory.In Chapter 2, the basic conception of thermal convection and the basic theory about mantle flow.The effects on generation and distribution of global lithospheric stres s field induced by mantle flow are the subject of Chapter 3. Mantle convection causes normal stress and tangential stresses at the bottom of the lithosphere, and then the sublithospheric stress field induces the lithospheric deformation as sixrface force and results in the stress field within the lithosphere. The simulation shows that the agreement between predictions and observations is good in most regions. Most of subduction zones and continental collisions are under compressive. While ocean ridges, such as the east Pacific ridge, the Atlantic ridge and the east African rift valley, are under tensile. And most of the hotspots preferentially occur in regions where calculated stress is tensile. The calculated directions of the most compressive principal horizontal stress are largely in accord with that of the observation except for some regions such as the NW-Pacifie subduction zone and Qinghai-Tibet Plateau, in which the directions of the most compressive principal horizontal stress are different. It shows that the mantel flow plays an important role in causing or affecting the large-scale stress field within the lithosphere.The global heat flow simulation based on a kinematic model of mantle convection is given in Chapter 4. Mantle convection velocities are calculated based on the internal loading theory at first, the velocity field is used as the input to solve the thermal problem. Results show that calculated depth derivatives of the near surface temperature are closely correlated to the observed surface heat flow pattern. Higher heat flow values around midocean ridge systems can be reproduced very well. The predicted average temperature as a function of function of depth reveals that there are two thermal boundary layers, one is close to the surface and another is close to the core-mantle boundary, the rest of the mantle is nearly isothermal. Although, in most of the mantle, advection dominates the heat transfer, the conductive heat transfer is still locally important in the boundary layers and plays an important role for the surface heat flow pattern. The existence of surface plates is responsible for the long wavelength surface heat flow pattern.In Chapter 5, the effects on present-day crustal movement in the China Mainland resulted from the mantle convection are introduced. Using a dynamic method, we present a quantitative model for the present-day crustal movement in China. We consider not only the effect of the India-Eurasia collision, the gravitational potential energy difference of the Tibet Plateau, but also the contribution of the shear traction on the bottom of the lithosphere induced by the global mantle convection. The comparison between our results and the velocity field obtained from the GPS observation shows that our model satisfactorily reproduces the general picture of crustal deformation in China. Numerical modeling results reveal that the stress field on the base of the lithosphere induced by the mantle flow is probably a considerable factor that causes the movement and deformation of the lithosphere in continental China with its eflfcet focuing on the Eastern China A numerical research on the small-scale convection with variable viscosity in the upper mantle is introduced in Chapter 6. Based on a two-dimensional model, small-scale convection in the mantle-lithosphere system with variable viscosity is researched by using of finite element method. Variation of viscosity in exponential form with temperature is considered in this paper The results show that if viscosity is strongly temperature-dependent, the upper part of the system does not take a share in the convection and a stagnant lid, which is identified as lithosphere, is formed on the top of system because of low temperature and high viscosity. The calculated surface heat flow, topography and gravity anomaly are associated well with the convection pattern, namely, the regions with high heat flow and uplift correspond to the upwelling flow, and vice versa.In Chapter 7, we give a brief of future research subject: The inversion of lateral density heterogeneity in the mantle by minimizing the viscous dissipation.
Resumo:
A perturbation method is used to examine the linear instability of thermocapillary convection in a liquid bridge of floating half-zone filled with a small Prandtl number fluid. The influence of liquid bridge volume on critical Marangoni number and flow features is analyzed. The neutral modes show that the instability is mainly caused by the bulk flow that is driven by the nonuniform thermocapillary forces acting on the free surface. The hydrodynamic instability is dominant in the case of small Prandtl number fluid and the first instability mode is a stationary bifurcation. The azimuthal wave number for the most dangerous mode depends on the liquid bridge volume, and is not always two as in the case of a cylindrical liquid bridge with aspect ratio near 0.6. Its value may be equal to unity when the liquid bridge is relatively slender.
Resumo:
This paper provides an overview of ongoing studies in the area of thermocapillary convection driven by a surface tension gradient parallel to the free surface in a floating zone. Here, research interests are focused around the onset of oscillatory thermocapillary convection, also known as the transition from quasisteady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, and the margin relationship can be represented by a complex function of the critical parameters. The experimental results indicate that the velocity deviation of an oscillatory flow has the same order of magnitude as that of an average flow, and the deviations of other quantities, such as temperature and free surface radii fluctuations, are much smaller when compared with their normal counterparts. Therefore, the onset of oscillation should be a result of the dynamic process in a fluid, and the problem is a strongly nonlinear one. In the past few decades, several theoretical models have been introduced to tackle the problem using analytical methods, linear instability analysis methods, energy instability methods, and unsteady 3D numerical methods. The last of the above mentioned methods is known to be the most suitable for a thorough analysis of strong nonlinear processes, which generally leads to a better comparison with the experimental results. The transition from oscillatory thermocapillary convection to turbulence falls under the studies of chaotic behavior in a new system, which opens a fascinating new frontier in nonlinear science, a hot research area drawing many recent works. This paper reviews theoretical models and analysis, and also experimental research, on thermocapillary connection in floating zones. It cites 93 references.
Resumo:
IEECAS SKLLQG
Resumo:
A multilayer white organic light-emitting diode (OLED) with high efficiency was present. The luminescent layer was composed of a red dye 4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped into NN-bis-(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4-4-diamine (NPB) layer and a blue-emitting 9,10-bis-(beta-naphthyl)-anthrene (DNA) layer. Red and blue emission, respectively, from DCJTB:NPB and DNA can be obtained by effectively controlling the thicknesses of DCJTB:NPB and DNA layers, thus a stable white light emission was achieved. The device turned on at 3.5 V, and the maximum luminance reached 16000 cd/m(2) at 21 V. The maximum current efficiency and power efficiency were 13.6 cd/A and 5.5 lm/W, respectively.
Resumo:
High-resolution multi-channel seismic data and geological samples were collected during two research cruises of the R/V FENDOU 4 in 1999 and 2000. Studies on these data and samples together with results from sites 1143-1145 and 1148 of ODP Leg 184 suggest that the geological structure on the continental slope of the northern South China Sea is favorable for the formation of gas hydrates. Bottom simulating reflectors (BSRs) and geochemical anomalies which indicate the existence of gas hydrates have been recognized in sediments of the Xisha Trough, the Dongsha Rise and the accretionary wedge of the Manila subduction zone. These gas hydrates are generated by two different mechanisms depending on the tectonic regime and the seismic and geochemical characteristics. The first applies to the passive continental margin of the nor-them South China Sea on the Dongsha Rise and in the Xisha Trough. The gas hydrates are associated with diapiric structures, active faults, slumps and gravity flows as well as high Late Cenozoic sedimentation rates. Their seismic expression includes BSRs, seismic blanking zones and velocity anomalies. The second mechanism is operative on the active continental margin along the Manila subduction zone, especially in the accretionary wedge. Here, gas hydrate occurrence is marked by widespread BSRs and acoustic 'pull-down' possibly related to the existence of free gas in the sediments beneath the BSR. The thickness of the seismic blanking zones averages 250 m, suggesting that the stable gas hydrate zone has about the same thickness. (c) 2005 Elsevier Ltd. All rights reserved.