104 resultados para STABILITY ANALYSIS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This paper provides a numerical approach on achieving the limit equilibrium method for 3D slope stability analysis proposed in the theoretical part of the previous paper. Some programming techniques are presented to ensure the maneuverability of the method. Three examples are introduced to illustrate the use of this method. The results are given in detail such as the local factor of safety and local potential sliding direction for a slope. As the method is an extension of 2D Janbu's generalized procedure of slices (GPS), the results obtained by GPS for the longitudinal sections of a slope are also given for comparison with the 3D results. A practical landslide in Yunyang, the Three Gorges, of China, is also analyzed by the present method. Moreover, the proposed method has the advantages and disadvantages of GPS. The problem frequently encountered in calculation process is still about the convergency, especially in analyzing the stability of a cutting corner. Some advice on discretization is given to ensure convergence when the present method is used. However, the problem about convergency still needs to be further explored based on the rigorous theoretical background.
Resumo:
Based on the broken characteristics about earthquake to tailings dams, the earthquake stability analysis methods for tailings dams are introduced. Taking fine tailings dam in Longdu Tailings Pool as an example, the stability of the dam with various situations while earthquake with seven magnitude takes place there. The results can be used by Longdu Mine for tailings pool safety management.
Resumo:
Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer.A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Bénard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Biot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Biot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.
Resumo:
Three-dimensional discrete element face-to-face contact model with fissure water pressure is established in this paper and the model is used to simulate three-stage process of landslide under fissure water pressure in the opencast mine, according to the actual state of landslide in Panluo iron mine where landslide happened in 1990 and was fathered in 1999. The calculation results show that fissure water pressure on the sliding surface is the main reason causing landslide and the local soft interlayer weakens the stability of slope. If the discrete element method adopts the same assumption as the limit equilibrium method, the results of two methods are in good agreement; while if the assumption is not adopted in the discrete element method, the critical phi numerically calculated is less than the one calculated by use of the limit equilibrium method for the same C. Thus, from an engineering point of view, the result from the discrete element model simulation is safer and has more widely application since the discrete element model takes into account the effect of rock mass structures.
Resumo:
From the macroscopic point of view, expressions involving reservoir and operational parameters are established for investigating the stability of moving interface in piston- and non-piston-like displacements. In the case of axi-symmetrical piston-like displacement, the stability is related to the moving interface position and water to oil mobility ratio. The capillary effect on the stability of moving interface depends on whether or not the moving interface is already stable and correlates with the wettability of the reservoir rock. In the case of non-piston-like displacement, the stability of the front is governed by both the relative permeability and the mobility ratio.
Resumo:
A linear stability analysis is applied to determine the onset of oscillatory thermocapillary convection in cylindrical liquid bridges of large Prandtl numbers (4 <= Pr <= 50). We focus on the relationships between the critical Reynolds number Re-c, the azimuthal wave number m, the aspect ratio F and the Prandtl number Pr. A detailed Re-c-Pr stability diagram is given for liquid bridges with various Gamma. In the region of Pr > 1, which has been less studied previously and where Re, has been usually believed to decrease with the increase of Pr, we found Re-c exhibits an early increase for liquid bridges with Gamma around one. From the computed surface temperature gradient, it is concluded that the boundary layers developed at both solid ends of liquid bridges strengthen the stability of basic axisymmetric thermocapillary convection at large Prandtl number, and that the stability property of the basic flow is determined by the "effective" part of liquid bridge. (c) 2008 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
The stability of a soil slope is usually analyzed by limit equilibrium methods, in which the identification of the critical slip surface is of principal importance. In this study the spline curve in conjunction with a genetic algorithm is used to search the critical slip surface, and Spencer's method is employed to calculate the factor of safety. Three examples are presented to illustrate the reliability and efficiency of the method. Slip surfaces defined by a series of straight lines are compared with those defined by spline curves, and the results indicate that use of spline curves renders better results for a given number of slip surface nodal points comparing with the approximation using straight line segments.
Resumo:
The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.
Resumo:
On the basis of the pseudopotential plane-wave method and the local-density-functional theory, this paper studies energetics, stress-strain relation, stability, and ideal strength of beta-SiC under various loading modes, where uniform uniaxial extension and tension and biaxial proportional extension are considered along directions [001] and [111]. The lattice constant, elastic constants, and moduli of equilibrium state are calculated and the results agree well with the experimental data. As the four SI-C bonds along directions [111], [(1) over bar 11], [11(1) over bar] and [111] are not the same under the loading along [111], internal relaxation and the corresponding internal displacements must be considered. We find that, at the beginning of loading, the effect of internal displacement through the shuffle and glide plane diminishes the difference among the four Si-C bonds lengths, but will increase the difference at the subsequent loading, which will result in a crack nucleated on the {111} shuffle plane and a subsequently cleavage fracture. Thus the corresponding theoretical strength is 50.8 GPa, which agrees well with the recent experiment value, 53.4 GPa. However, with the loading along [001], internal relaxation is not important for tetragonal symmetry. Elastic constants during the uniaxial tension along [001] are calculated. Based on the stability analysis with stiffness coefficients, we find that the spinodal and Born instabilities are triggered almost at the same strain, which agrees with the previous molecular-dynamics simulation. During biaxial proportional extension, stress and strength vary proportionally with the biaxial loading ratio at the same longitudinal strain.
Resumo:
The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D-s and the natural slope angle alpha, the joint inclination angle theta as well as the strength parameters of the joints c(r) ,phi(r) is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.
Resumo:
A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.
Resumo:
Fe-B ultrafine amorphous alloy particles (UFAAP) were prepared by chemical reduction of Fe3+ with NaBHO4 and confirmed to be ultrafine amorphous particles by transmission electron microscopy and X-ray diffraction. The specific heat of the sample was measured by a high precision adiabatic calorimeter, and a differential scanning calorimeter was used for thermal stability analysis. A topological structure of Fe-B atoms is proposed to explain two crystallization peaks and a melting peak observed at T=600, 868 and 1645 K, respectively.