5 resultados para SPACE USE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
One of the most endangered populations of Black-necked Cranes (Grus nigricollis), the central population, is declining due to habitat loss and degradation, but little is known about their space use patterns and habitat preferences. We examined the space use and habitat preferences of Black-necked Cranes during the winter of 2007-2008 at the Napahai wetland in northwest Yunnan, China, where approximately 300 Black-necked Cranes (>90% of the total central population) spent the winter. Euclidean distance analysis was employed to determine the habitat preferences of Black-necked Cranes, and a local nearest-neighbor, convex-hull construction method was used to examine space use. Our results indicate that Black-necked Cranes preferred shallow marsh and wet meadow habitats and avoided farmland and dry grassland. Core-use areas (50% isopleths) and total-use areas (100% isopleths) accounted for only 1.2% and 28.2% of the study area, respectively. We recommend that habitat protection efforts focus on shallow marsh and wet meadow habitats to maintain preferred foraging sites. Core-use areas, such as the primary foraging areas of Black-necked Cranes, should be designated as part of the core zone of the nature reserve. Monthly shifts in the core-use areas of the cranes also indicate that the reserve should be large enough to permit changes in space use. In addition to preserving habitat, government officials should also take measures to decrease human activity in areas used by foraging Black-necked Cranes.
Resumo:
Based on coupled map lattice (CML), the chaotic synchronous pattern in space extend systems is discussed. Making use of the criterion for the existence and the conditions of stability, we find an important difference between chaotic and nonchaotic movements in synchronization. A few numerical results are presented.
Resumo:
We explore the use of the Radon-Wigner transform, which is associated with the fractional Fourier transform of the pupil function, for determining the point spread function (PSF) of an incoherant defocused optical system. Then we introduce these phase-space tools to analyse the wavefront coding imaging system. It is shown that the shape of the PSF for such a system is highly invarient to the defocous-related aberrations except for a lateral shift. The optical transfer function of this system is also investigated briefly from a new understanding of ambiguity function.
Resumo:
In the light of descriptive geometry and notions in set theory, this paper re-defines the basic elements in space such as curve and surface and so on, presents some fundamental notions with respect to the point cover based on the High-dimension space (HDS) point covering theory, finally takes points from mapping part of speech signals to HDS, so as to analyze distribution information of these speech points in HDS, and various geometric covering objects for speech points and their relationship. Besides, this paper also proposes a new algorithm for speaker independent continuous digit speech recognition based on the HDS point dynamic searching theory without end-points detection and segmentation. First from the different digit syllables in real continuous digit speech, we establish the covering area in feature space for continuous speech. During recognition, we make use of the point covering dynamic searching theory in HDS to do recognition, and then get the satisfying recognized results. At last, compared to HMM (Hidden Markov models)-based method, from the development trend of the comparing results, as sample amount increasing, the difference of recognition rate between two methods will decrease slowly, while sample amount approaching to be very large, two recognition rates all close to 100% little by little. As seen from the results, the recognition rate of HDS point covering method is higher than that of in HMM (Hidden Markov models) based method, because, the point covering describes the morphological distribution for speech in HDS, whereas HMM-based method is only a probability distribution, whose accuracy is certainly inferior to point covering.
Resumo:
Space ordered 1.3μm self-assembled InAs QDs are grown on GaAs(100) vicinal substrates by MOCVD. Photoluminescence measurements show that the dots on vicinal substrates have a much higher PL intensity and a narrower FWHM than those of dots on exact substrates, which indicates better material quality. To obtain 1.3μm emissions of InAs QDs, the role of the so called InGaAs strain cap layer (SCL) and the strain buffer layer (SBL) in the strain relaxation process in quantum dots is studied. While the use of SBL results only in a small change of emission wavelength,SCL can extend the QD's emission over 1.3μm due to the effective strain reducing effect of SCL.