17 resultados para SISO MULTI-RATE MC-CDMA
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
For this sake, the macroscopic equations of mechanics and the kinetic equations of the microstructural transformations should form a unified set that be solved simultaneously. As a case study of coupling length and time scales, the trans-scale formulation
Resumo:
This short communication presents our recent studies to implement numerical simulations for multi-phase flows on top-ranked supercomputer systems with distributed memory architecture. The numerical model is designed so as to make full use of the capacity of the hardware. Satisfactory scalability in terms of both the parallel speed-up rate and the size of the problem has been obtained on two high rank systems with massively parallel processors, the Earth Simulator (Earth simulator research center, Yokohama Kanagawa, Japan) and the TSUBAME (Tokyo Institute of Technology, Tokyo, Japan) supercomputers.
Resumo:
An optical parametric chirped-pulse amplification system is demonstrated to provide 32.9% pump-to-signal conversion efficiency . Special techniques are used to make the signal and pump pulses match with each other in both spectral and temporal domains. The broadband 9.5-mJ pulses are produced at the repetition rate of 1 Hz with the gain of over 1.9 x 10(8). The output energy fluctuation of 7.8% is achieved for the saturated amplification process against the pump fluctuation of 10%.
Resumo:
In the sinusoidal phase modulating interferometer technique, the high-speed CCD is necessary to detect the interference signals. The reason of ordinary CCD's low frame rate was analyzed, and a novel high-speed image sensing technique with adjustable frame rate based on ail ordinary CCD was proposed. And the principle of the image sensor was analyzed. When the maximum frequency and channel bandwidth were constant, a custom high-speed sensor was designed by using the ordinary CCD under the control of the special driving circuit. The frame rate of the ordinary CCD has been enhanced by controlling the number of pixels of every frame; therefore, the ordinary of CCD can be used as the high frame rate image sensor with small amount of pixels. The multi-output high-speed image sensor has the deficiencies of low accuracy, and high cost, while the high-speed image senor with small number of pixels by using this technique can overcome theses faults. The light intensity varying with time was measured by using the image sensor. The frame rate was LIP to 1600 frame per second (f/s), and the size of every frame and the frame rate were adjustable. The correlation coefficient between the measurement result and the standard values were higher than 0.98026, and the relative error was lower than 0.53%. The experimental results show that this sensor is fit to the measurements of sinusoidal phase modulating interferometer technique. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
This is the first experimental study to compare difference in the development of tolerance against toxic Microcystis among multi-species of cladocerans (Daphnia, Moina and Ceriodaphnia) pre-exposed to two M. aeruginosa PCC7820 strains (MC-containing and MC-free). Zooplankton were divided into S population (fed Scenedesmus), M-F population (fed Scenedesmus + MC-free Microcystis), and M-C population (fed Scenedesmus + MC-containing Microcystis). M-F and M-C populations were pre-exposed to Microcystis strains for 4 weeks, and their newborns were collected for experiments. A pre-exposure to MC-containing or MC-free Microcystis increased tolerance against toxic Microcystis. The marked increases in survival rate and median lethal time (LT50, 100-194% increase) in the M-C population of Ceriodaphnia suggest that small-sized cladocerans may develop stronger tolerance against Microcystis than large-sized ones when both groups are exposed to toxic Microcystis. This may explain why dominant Daphnia is usually replaced by small-sized cladocerans when cyanobacteria bloomed in summer in eutrophic lakes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, from the cognition science point of view, we constructed a neuron of multi-weighted neural network, and proposed a new method for iris recognition based on multi-weighted neuron. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the correct rejection rate is 98.9%, the correct cognition rate and the error recognition rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high. It proves the proposed method for iris recognition is effective.
Resumo:
With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-linger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880 mu m(2)) is fabricated with 2 mu m double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10 V and the collector-base junction breakdown voltage BVCBO is 16 V with collector doping concentration of 1 x 10(17) cm(-3) and thickness of 400 nm. The device exhibited a maximum oscillation frequency f(max) of 35.5 GHz and a cut-off frequency f(T) of 24.9 GHz at a dc bias point of I-C = 70 mA and the voltage between collector and emitter is V-CE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0 dBm to 21 dBm. A maximum output power of 29.9 dBm (about 977 mW) is obtained at an input power of 18.5 dBm with a gain of 11.47 dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, f(max) and f(T) are improved by about 83.9% and 38.3%, respectively.
Resumo:
The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper. Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.
Resumo:
Homoepitaxial growth of 4H-SiC p(+)/pi/n(-) multi-epilayer on n(+) substrate and in-situ doping of p(+) and pi-epilayer have been achieved in the LPCVD system with SiH4+C2H4+H-2. The surface morphologies, homogeneities and doping concentrations of the n(-)-single-epilayers and the p(+)/pi/n(-) multi-epilayers were investigated by Nomarski, AFM, Raman and SIMS, respectively. AFM and Raman investigation showed that both single- and,multi-epilayers have good surface morphologies and homogeneities, and the SIMS analyses indicated the boron concentration in p+ layer was at least 100 times higher than that in pi layer. The UV photodetectors fabricated on 4H-SiC p(+)/pi/n(-) multi-epilayers showed low dark current and high detectivity in the UV range.
Resumo:
A thin oriented bacteriorhodopsin (bR) him is deposited on a stainless steel slide by use of the electrophoretic sedimentation method. A junction is made with electrolyte gels having a counterelectrode to construct a bR-based photoelectric detector;. The photoelectric response signal to a 10 ns laser pulse is measured. A theory on the photoelectric kinetics of bR is developed based on the concept of the charge displacement current and the bR photocycle rate equations. Comparison between the theoretical and experimental results proves that the bR photoelectric response to a short laser pulse is a multi-exponential process. The decay time constants and amplitudes of each, exponential component are obtained by data fitting.
Resumo:
Numerical simulations of the multi-shock interactions observable around hypersonic vehicles were carried out by solving Navier-Stokes equations with the AUSMPW scheme and the new type of the IV interaction created by two incident shock waves was investigated in detail. Numerical results show that the intersection point of the second incident shock with the bow shock plays important role on the flow pattern, peak pressures and heat fluxes. In the case of two incident shocks interacting with the bow shock at the same position, the much higher peak pressure and more severe heat transfer rate are induced than the classical IV interaction. The phenomenon is referred to as the multi-shock interaction and higher requirements will be imposed on thermal protection systems.
Resumo:
During the last years FOPI has developed a new ToF system as an upgrade of the existing detector based on Multi-strip Multi-gap Resistive Plate Chambers (MMRPCs). The intention is to increase the charged Kaon identification up to a laboratory momentum of 1 GeV/c and to enhance the azimuthal detector granularity. The new ToF barrel has an active area of 5 m(2) with 2400 individual strips (900 x 1.6 mm(2)) [A. Schuttauf, et al., Nucl. Phys. B 158 (2006) 52] which are read out on both sides by a custom designed electronics [M. Ciobanu, et al., IEEE Trans. Nucl. Sci. NS-54 (4) (2007) 1201; K. Koch, et al., IEEE Trans. Nucl. Sci. NS-52(3) (2005) 745]. To reach the envisaged goal a time resolution of 100 ps is needed, at a flight path of 1-1.3 m. Due to the rare production of the K- at SIS energies the efficiency of the MMRPCs has to be above 95%. We report on measurements with the detectors and electronics from the mass production line. For this purpose we used a proton beam at 2.0 and 1.25 GeV, at rates between 0.1 and 5 kHz/cm(2) to determine the timing, efficiency and rate capability of the MMRPCs
Resumo:
A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable Cl controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this study, we report the effects of ferricyanide on organisms based on the changes in physiological state and morphology of Escherichia coli (E coli) DH 5 alpha after being pretreated by ferricyanide. The impact on bacterial cell growth and viable rate of exposure to different concentrations of ferricyanide was determined, and the morphology change of E. coli was studied by atomic force microscopy (AFM). Finally, recovery test was used to evaluate the recovery ability of injured cells. The results showed that the effects on growth and morphology of E. coli were negligible when the concentration of ferricyanide was below 25.0 mM. While the results showed 50.8% inhibition of growth in the presence of 50.0 mM ferricyanide for 3 h, 89.6% viability was detected by flow cytometry (FCM) assay. AFM images proved that compact patches appeared on the bacterial surface and protected the bacterial viability. Furthermore, the results revealed that deterioration of bacterial surface closely related to the incubation time from 0.5 to 3 h at 100.0 mM ferricyanide. In the recovery test, microbial cell population and dissolved oxygen individually decreased 36.7% and 28.3% with 25.0 mM ferricyanide.
Resumo:
In 0.05 mol/L phosphate buffer solution (pH 7.0), carbon nanotubes modified electrode exhibits rapid response, strong catalytic activity with high stability toward the electrochemical oxidation of catechol. The electrochemical behavior of catechol on both the multi-walled and single-walled carbon nanotubes modified electrode was investigated. The experimental conditions, such as pH of the solution and scan rate were optimized. The currents (measured by constant potential amperometry) increase linearly with the concentrations of catechol in the range of 2.0 x 10(-5) - 1.2 x 10(-3) mol/L. Moreover, at the multi-walled carbon nanotubes modified electrode the electrochemical responses of catechol and ascorbic acid can be separated clearly.