149 resultados para SINTERABLE CERAMIC POWDERS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile molten salt synthesis route was developed to prepare ZnTiO3 ceramic powders with simple oxides ZnO and TiO2 using sodium and potassium chloride eutectic salts as flux. The role of calcination temperature and time and the amount of salt addition to ZnTiO3 formation was investigated by thermogravimetry-differential thermal analysis, X-ray diffraction and Fourier transformation-infrared spectroscopy measurements. Pure hexagonal phase of ZnTiO3 could be obtained from the mixture of the simple oxides and the chlorides (50 mol% KCl, 20 times to oxides in molar ratio) heating at 800 degrees C for 6 h. The scanning electron microscopy images revealed the products were hexagonal sheets of about 1-3 mu m size. Increasing the amount of salt aids in reducing the crystal sizes of final ceramic powders because of diluting the solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanopowders of amorphous silicon nitride were densified and sintered without additives under ultrahigh pressure (1.0-5.0 GPa) between room temperature and 1600 degrees C. The powders had a mean diameter of 18 nm and contained similar to 5.0 wt% oxygen that came from air-exposure oxidation, Sintering results at different temperatures were characterized in terms of sintering density, hardness, phase structure, and grain size. It was observed that the nanopowders can be pressed to a high density (87%) even at room temperature under the high pressure. Bulk Si3N4 amorphous and crystalline ceramics (relative density: 95-98%) were obtained at temperatures slightly below the onset of crystallization (1000-1100 degrees C and above 1420 degrees C, respectively. Rapid grain growth occurred during the crystallization leading to a grain size (>160 nm) almost 1 order of magnitude greater than the starting particulate diameters, With the rise of sintering temperature, a final density was reached between 1350 and 1420 degrees C, which seemed to be independent of the pressure applied (1.0-5.0 GPa), The densification temperature observed under the high pressure is lower by 580 degrees C than that by hot isostatic pressing sintering, suggesting a significantly enhanced low-temperature sintering of the nanopowders under a high external pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization and phase transformation of amorphous Si3N4 ceramics under high pressure (1.0-5.0 GPa) between 800 and 1700 degreesC were investigated. A greatly enhanced crystallization and alpha-beta transformation of the amorphous Si3N4 ceramics were evident under the high pressure, as characterized by that, at 5.0 GPa, the amorphous Si3N4, began to crystallize at a temperature as low as 1000 degreesC (to transform to alpha modification). The subsequent alpha-beta transformation occurred completed between 1350 and 1420 degreesC after only 20 min of pressing at 5.0 GPa. In contrast, under 0.1 MPa N-2, the identical amorphous materials were stable up to 1400 degreesC without detectable crystallization, and only a small amount of a phase was detected at 1500 degreesC. The crystallization temperature and the alpha-beta transformation temperatures are reduced by 200-350 degreesC compared to that at normal pressure. The enhanced phase transformations of the amorphous Si3N4, were discussed on the basis of thermodynamic and kinetic consideration of the effects of pressure on nucleation and growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multi-component substitution of Co and Ni was incorporated into ZnTiO3 to form pure hexagonal Zn1-x(Co1/2Ni1/2)xTiO(3) (x = 0,0.8,0.9,1.0) dielectric ceramic powders by a modified sol-gel route, following heat treatments at 600 degrees C for 3 h and at 800 degrees C for 6 h. Differential scanning calorimetry measurements revealed that the order of increasing thermal stability of solid solution compound Zn1-x(Co1/2Ni1/2)(x)TiO3 was ZnTiO3 (945 degrees C), Zn0.1Ni0.9TiO3 (1346 degrees C), Zn-0.1(Co1/2Ni1/2)(0.9)TiO3 (1390 degrees C), and Zn0.1Co0.9TiO3 (> 1400 degrees C). Both the dielectric constant and loss tangent reached a maximum at x = 0.8 and then decreased with solubility, x, and measurement frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent polycrystalline Nd:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3,Y2O3, and Nd2O3 powders. The powders were mixed in ethanol and doped with 0.5 wt% tetraethoxysilane, dried, and pressed. Pressed samples were sintered at 1750 degrees C in vacuum. Transparent fully dense samples with average grain sizes of 10 mu m were obtained. The 1 at.% Nd:YAG ceramic was used to research passively Q-switched laser output with a Cr4+:YAG crystal as a saturable absorber. An average output power of 94 mW with a pulse width of 50 ns was obtained when the incident pump power was 750 mW. The slope efficiency was 13%. The pulse energy is 5 mu J, and the peak power is about 100 W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent polycrystalline Yb:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3, Y2O3, and Yb2O3 powders. The powders were mixed in ethanol and doped with 0.5 wt% tetraethoxysilane, dried, and pressed. Pressed samples were sintered at 1730 degrees C in vacuum. Transparent fully dense samples with grain sizes of several micrometers were obtained. The phase from 1500 degrees to 1700 degrees C was important for the grain growth, in which the grains grew quickly and a mass of pores were eliminated from the body of the sample. Annealing was an important step to remove the vacancies of oxygen and transform Yb2+ to Yb3+. The 1 at.% Yb:YAG ceramic sample was pumped by a diode laser to study the laser properties. The maximum output power of 1.02 W was obtained with a slope efficiency of 25% at 1030 nm. The size of the lasering sample was 4 mm x 4 mm x 3 mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The novel nano-ultrafine powders for the preparation of CaCu3Ti4O12 ceramic were prepared by the sol-gel method and citrate auto-ignition method. The obtained precursor powders were pressed, sintered at 1000 degrees C to fabricate microcrystal CaCu3Ti4O12 ceramic. The microcrystalline phase of CaCu3Ti4O12 was confirmed by X-ray powder diffraction (XRD). The morphology and size of the grains of the powders and ceramics under different heat treatments were observed using scanning electron microscopy (SEM). The relative dielectric constant of the ceramic sintered at 1000 degrees C was measured with a magnitude of more than 10(4) at room temperature, which was approaching to those of Pb-containing complex perovskite ceramics, and the loss tangent was less than 0.20 in a broad frequency region. The relative dielectric constant and loss tangent were also compared with that of CaCu3Ti4O12 ceramic prepared by other reported methods. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic approach is proposed to obtain the interfacial interatomic potentials. By inverting ab initio adhesive energy curves for the metal-MgO ceramic interfaces, We derive interfacial potentials between Ag and O2-, Ag and Mg2+, Al and O2-, Al and Mg2+. The interfacial potentials, obtained from this method, demonstrate general features of bondings between metal atoms and ceramic ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar plasma technology was used to produce ceramic hardened layers of Al2O3-40% mass Ni composite powders on stainless steel substrates. In order to investigate the influences of processing conditions on the morphologies of the surface modified layers, two different powder-feeding methods were tested, one with carrier gas called the powder injection method, and the other without carrier gas called powder transfers method. The microscopic investigations demonstrate that the cross-section of the clad layers consists of two distinct microstructural regions, in which the Al2O3 phases exhibit different growth mechanisms. When the powder transfers method is adopted, the number density and volume fraction of the Al2O3 particles increase considerably and their distributions exhibit zonal periodical characteristics. When the powder-feeding rate increases, the microstructure of the Al2O3 phases changes from a small globular to a long needle shape. Finite element simulations show that the transient thermo-physical features of the pool substances, such as solidification rate and cooling rate, influence strongly the mechanisms of the nucleation and the directional growth of the Al2O3 phases in the thermal processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered. Two different fracture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films. A set of experiments have been done on the mechanism of copper films delaminating from silica substrates, based on which the peak interface separation stress and the micro-length scale of material, as well as the dislocation-free zone size are predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic coatings are produced on aluminum alloy by autocontrol AC pulse Plasma Electrolytic Oxidation (PEO) with stabilized average current. Transient signal gathering system is used to study the current, voltage, and the transient wave during the PEO process. SEM, OM, XRD and EDS are used to study the coatings evolution of morphologies, composition and structure. TEM is used to study the micro profile of the outer looser layer and inner compact layer. Polarization test is used to study the corrosion property of PEO coatings in NaCl solution. According to the test results, AC pulse PEO process can be divided into four stages with different aspects of discharge phenomena, voltage and current. The growth mechanism of AC PEO coating is characterized as anodic reaction and discharge sintering effect. PEO coating can increase the corrosion resistance of aluminum alloy by one order or two; however, too long process time is not necessarily needed to increase the corrosion resistance. In condition of this paper, PEO coating at 60 min is the most protective coating for aluminum alloy substrate. (C) 2008 Elsevier B.V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper combines the four-point bending test, SEM and finite element method to study the interface fracture property of PEO coatings on aluminum alloy. The interface failure mode of the coating on the compression side is revealed. The ceramic coating crack firstly along the 45 degrees to the interface, then the micro crack in the coating deduces the interface crack. The plastic deformation observed by SEM shows excellent adhesion property between the coating and substrate. The plastic deformation in the substrate is due to the interfacial crack extension, so the interface crack mode of PEO coatings is ductile crack. The results of FEM show that the compression strength is about 600 MPa. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of peeling experiments are performed in the present research. One is for the Al film/Al2O3 substrate system with an adhesive layer between the film and the substrate. The other one is for the Cu film/Al2O3 substrate system without adhesive layer between the film and the substrate, and the Cu films are electroplated onto the Al2O3 substrates. For the case with adhesive layer, two kinds of adhesives are selected, which are all the mixtures of epoxy and polyimide with mass ratios 1:1.5 and 1:1, respectively. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling process. The effects of the adhesive layer on the energy release rate are analyzed. Using the experimental results, several analytical criteria for the steady-state peeling based on the bending model and on the two-dimensional finite element analysis model are critically assessed. Through assessment of analytical models, we find that the cohesive zone criterion based on the beam bend model is suitable for a weak interface strength case and it describes a macroscale fracture process zone case, while the two-dimensional finite element model is effective to both the strong interface and weak interface, and it describes a small-scale fracture process zone case. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, peel tests and inverse analysis were performed to determine the interfacial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90 degrees, 135 degrees and 180 degrees were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result.