48 resultados para SIMULATED GASTROINTESTINAL CONDITIONS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
To expand the feasibility of applying simple, efficient, non-invasive DNA preparation methods using samples that can be obtained from giant pandas living in the wild, we investigated the use of scent markings and fecal samples. Giant panda-specific oligonucleotide primers were used to amplify a portion of the mitochondrial DNA control region as well as a portion of the mitochondrial DNA cytochrome b gene and tRNA(Thr) gene region. A 196 base pair (bp) fragment in the control region and a 449 bp fragment in the cytochrome b gene and tRNA(Thr) gene were successfully amplified. Sequencing of polymerase chain reaction (PCR) products demonstrated that the two fragments are giant panda sequences. Furthermore, under simulated field conditions we found that DNA can be extracted from fecal samples aged as long as 3 months. Our results suggest that the scent mark and fecal samples are simple, efficient, and easily prepared DNA sources. (C) 1998 Wiley-Liss, Inc.
Resumo:
A novel multi-cell device made of organic glass was designed to study morphological and physiological characteristics of Microcystis population trapped in simulated sediment conditions. Changes of colonial morphology and antioxidant activities of the population were observed and measured over the range of 31-day incubation. During the incubation, the antioxidant enzyme activities fluctuated significantly in sediment environments. The activities of catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (NIDA) reached the highest on the 11(th) day, 6(th) day and 6(th) day. respectively, and then dropped down remarkably in the following days. The ratios of Fv/Fm and the maximal electron transfer rate (ETRm) declined during the initial days (1 similar to 11(th) day), but rebounded on the 16(th) day, which were consistent with the variations of total protein. In the end of incubation. gas vacuoles were hard]), observed and the gelatinous sheath was partly disappeared in the population of Microcystis. Nevertheless, the remaining populations. upon transferred to culture medium, were able to grow though experiencing a longer lag phase of nine days. The results indicated that the sediment environments were able to cause negative effects on M. aeruginosa cells. The cells, however, responded to against the possible damage afterwards. It is thus proposed the acute responses in the population during the early stage of sedimentation could be of importance in aiding the long-term survivor of Microcystis and recruitment in lake sediments. The present study also demonstrated the utility of the device in simulating the sediment environments for further investigation.
Resumo:
利用室内人工模拟降雨,研究了不同初始含水量砂黄土在降雨条件下入渗-径流、土壤侵蚀,以及NO3--N随径流流失和土壤深层淋溶特征。结果表明,初始含水量对产流时刻的影响在相对含水量为49.4%和76.9%之间存在一个转折点,高初始含水量较低含水量产流提前大约15 min;土壤侵蚀量随着土壤初始含水量的增加而增加,相对含水量为97.1%时,侵蚀泥沙量分别是相对含水量22.9%时的2.8倍,49.4%时的2.3倍,76.9%时的1.5倍。初始含水量高的处理径流初始NO3--N浓度高,随后各处理均衰减很快,10 min左右NO3--N含量趋于雨水本底值;土壤初始含水量越低,NO3--N被淋洗的程度越严重,土壤剖面中NO3--N的浓度峰越深。对于黄土高原坡地砂黄土NO3--N迁移特征来看,按照NO3--N迁移数量,随径流和泥沙流失量比向土壤深层迁移的数量小。说明在降雨条件下,NO3--N主要通过土壤深层淋溶损失,且土壤初始含水量越低其损失越严重。针对黄土高原降水量小、分布集中的特点,采取措施增加入渗,蓄积水分,在一定含水量下施肥,以提高氮肥利用率,降低NO3--N的淋溶。
Resumo:
利用高度分别为10 mm, 12 mm和14 mm的水平窄通道对微重力环境下热薄材料表面的火焰传播、材料的可燃极限进行了地面实验模拟研究. 在环境氧气浓度为18%和21%, 气流速度为0-50 cm/s条件下, 窄通道模拟实验结果与已有微重力实验结果的对比分析表明:气流速度小于15-20 cm/s时, 高度为12 mm和14 mm的窄通道能较好模拟微重力条件下材料表面的火焰传播, 气流速度大于15-20cm/s时, 高度为10 mm的通道能较好模拟;高度为12 mm和14 mm的窄通道能够模拟热薄材料的可燃极限曲线, 而高度为10 mm的通道模拟的可燃极限曲线则出现一定偏差. 分析认为, 窄通道能够有效地限制浮力对流, 进而提供模拟微重力条件下材料燃烧特性的实验环境, 通道内的剩余浮力对流和通道壁面热损失可能是造成材料燃烧特性定量差别的主要原因.
Resumo:
通过野外天然降雨产流及人工模拟降雨试验,研究不同植被对坡面土壤侵蚀及土壤铜元素流失的影响及降雨过程中铜元素的流失规律。结果表明:(1)紫花苜蓿、绿豆、荒草3种植被覆盖小区的年径流量为5183.8,5 366.2,3 867.3 m~3/km~2,比裸地减少33%,30.8%和50.1%;侵蚀模数为379.18.482.3,15.78 t/km~2,比裸地减少34.7%,16.4%和97.2%;全年全铜流失量为12.9,25.5,0.46 kg/km~2,有效铜流失量为6.22,11.01,0.15 kg/ km~2,分别比裸地减少67.3%,35.3%,98.8%和54.6%,19.6%,98.9%;(2)在模拟降雨过程中,农地小区的产流产沙强度过程呈现波动上升趋势,产沙过程波动较产流过程剧烈。铜元素流失强度过程与产流产沙强度过程相似,但其峰值多于产流产沙过程,且最高峰出现时间不同。有效铜流失强度变化率略高于全铜。
Resumo:
Effect of alloy elements on corrosion of low alloy steel was studied under simulated offshore conditions. The results showed that the elements Cu, P, Mo, W, V had evident effect on corrosion resistance in the atmosphere zone; Cu, P, V, Mo in the splash zone and Cr, Al, Mo in the submerged zone.
Resumo:
Liquid mixtures of water and deuterium oxide as the liquid phase, were used to match the density of charged colloidal particles. Kossel diffraction method was used to detect the crystal structures. The experiments under the density-matched (g=0) and unmatched (g=1) conditions are compared to examine the influence of gravity on the crystal structures formed by self-assembly of 110 nm (in diameter) polystyrene microspheres. The result shows that die gravity tends to make the lattice constants of colloidal crystals smaller at lower positions, which indicates that the effect of gravity should be taken into account in the study of the colloidal crystals.
Resumo:
A numerical 2D method for simulation of two-phase flows including phase change under microgravity conditions is presented in this paper, with a level set method being coupled with the moving mesh method in the double-staggered grid systems. When the grid lines bend very much in a curvilinear grid, great errors may be generated by using the collocated grid or the staggered grid. So the double-staggered grid was adopted in this paper. The level set method is used to track the liquid-vapor interface. The numerical analysis is fulfilled by solving the Navier-Stokes equations using the SIMPLER method, and the surface tension force is modeled by a continuum surface force approximation. A comparison of the numerical results obtained with different numerical strategies shows that the double-staggered grid moving-mesh method presented in this paper is more accurate than that used previously in the collocated grid system. Based on the method presented in this paper, the condensation of a single bubble in the cold water under different level of gravity is simulated. The results show that the condensation process under the normal gravity condition is different from the condensation process under microgravity conditions. The whole condensation time is much longer under the normal gravity than under the microgravity conditions.
Resumo:
The technology of "explosion in fractures" is one of new synthetic engineering methods used in low permeability reservoirs. The most important problem arose from the technology is to assess the deflagration propagation capability of milky explosives in rock fractures. In order to investigate detailed this problem in the laboratory, an experimental setup was designed and developed in which different conditions can be simulated. The experimental setup mainly includes two parts. One is the experimental part and the other is the measurement part. In the experimental setup, the narrow slots with different width can be simulated; meanwhile, different initial pressures and initial temperatures can be loaded on the explosives inside the narrow slots. The initial pressure range is from 0-60 MPa, and the initial temperatures range is from room temperature to 100 V. The temperature and the velocity of deflagration wave can be measured; meanwhile the corresponding pressure in the narrow slot is also measured. In the end, some typical measurement results are briefly presented and discussed.
Resumo:
The objective of this work was to apply visualization methods to the experimental study of cornstarch dust-air mixture combustion in a closed vessel volume under microgravity conditions. A dispersion system with a small scale of turbulence was used in the experiments. A gas igniter initiated combustion of the dust-air mixture in the central or top part of the vessel. Flame propagation through the quiescent mixture was recorded by a high-speed video camera. Experiments showed a very irregular flame front and irregular distribution of the regions with local reactions of re-burning behind the flame front. at a later stage of combustion. Heat transfer from the hot combustion products to the walls is shown to have an important role in the combustion development. The maximum pressure and maximum rate of pressure rise were higher for flame propagation from the vessel center than for flame developed from the top pan of the vessel. The reason for smaller increase of the rate of pressure rise, for the flame developed from the top of the vessel. in comparison with that developed from the vessel center, was much faster increase of the contact surface of the combustion gases with the vessel walls. It was found that in dust flames only small part of hear was released at the flame front, the remaining part being released far behind it.
Resumo:
An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.
Resumo:
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Resumo:
The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed.
Resumo:
A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.
Resumo:
A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.