38 resultados para SEWAGE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The seasonal variations of estrogenic compounds and the estrogenicities of influent and effluent were investigated by OF chemical analysis and in vitro assay in a municipal sewage treatment plant in Wuhan (China). The levels of eight estrogenic compounds, including 17 beta-estradiol (E-2) estrone (E-1), estriol (E-3) diethylstilbestrol (DES), 17 alpha-ethinylestradiol, nonylphenol (NP), 4-tert-octylphenol (OP), and bisphenol A (BPA), were measured by gas chromatography-mass spectrometry. Total estrogenic activity of sewage was quantitatively assessed using primary cultured hepatocytes of male Megalobrama amblycephala Yih using vitellogenin as a biomarker. The E-2 equivalents (EEQs) obtained from the chemical analysis were consistent with those measured by bioassay. The natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, as well as NP, were the main contributors of the total EEQs of influent and effluent in the present study. The levels of natural estrogens E-1 and E-3 in the influent and effluent were higher in winter than in summer, whereas the situation for NP and OP was the reverse. The levels of E-2, DES, and BPA varied little among different seasons. 17 alpha-Ethinylestradiol was not detected in the influent and effluent. The estrogenicities of the influent and of the primary and secondary effluents were all higher in summer than in winter. Estrogenic activities in winter mainly originated from natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, whereas the increase of EEQs in summer was contributed by NP The results from chemical analysis and bioassay demonstrate that estrogenic compounds cannot be entirely removed by the existing sewage treatment process, which should be further improved to protect aquatic ecosystems and human health.
Resumo:
The present study was conducted to assess the potential toxicity of the effluent from a large sewage treatment plant (GBD-STP) in Beijing. Japanese medakas (Oryzias latipes) at reproduction active period were exposed to a serial of graded concentrations of the effluent or 100 ng l(-1) of 17-alpha-ethinylestradiol (EE2, positive control). Growth, gonadosomatic index (GSI), hepatosomatic index (HSI), reproductive success, induction potency of vitellogenin (VTG) in male fish and that of 7-ethoxyresorufin-o-deethylase activity (EROD) in male fish liver were used as test endpoints. The growth suppression of fish was observed in a dose-dependent manner, resulting in significant differences in both body length and body weight of medaka above 5% effluent. This effluent can inhibit the growth of gonad of medakas and are more sensitive to male than to female. At exposure concentration of 40% and higher, there was an unexpected decrease of HSI values, which may be resulted from sub-lethal toxicity of effluent to fish liver. VTG of plasma in males were induced in all exposure concentration levels, but not in a dose-dependent manner. The concentration of 5% effluent would be the lowest observed adverse effect level (LOAEL) affecting reproductive success when examining fertile individuals, fecundity and fertilization rate. The overt CYP1A response and higher reproductive toxicity may be indicative of low process efficiency of this STP. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Hydrogen sulfide (H2S) production patterns and the influence of oxygen (O-2) concentration were studied based on a well operated composting plant. A real-time, online multi-gas detection system was applied to monitor the concentrations of H2S and O-2 in the pile during composting. The results indicate that H2S was mainly produced during the early stage of composting, especially during the first 40 h. Lack of available O-2 was the main reason for H2S production. Maintaining the O-2 concentration higher than 14% in the pile could reduce H2S production. This study suggests that shortening the interval between aeration or aerating continuously to maintain a high O-2 concentration in the pile was an effective strategy for restraining H2S production in sewage sludge composting. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The behaviour of gaseous chlorine and alkali metals of three sorts of biomass (Danish straw, Swedish wood, and sewage sludge) in combustion or gasification is investigated by the chemical equilibrium calculating tool. The ranges of temperature, air-to-fuel ratio, and pressure are varied widely in the calculations (T=400-1800 K, gimel=0-1.8, and P=0.1-2.0 MPa). Results show that the air excess coefficient only has less significant influence on the release of gaseous chlorine and potassium or sodium during combustion. However, in biomass gasification, the influence of the air excess coefficient is very significant. Increasing air excess coefficient enhances the release of HCl(g), KOH(g), or NaOH(g) as well as it reduces the formation of KCl(g), NaCl(g), K(g), or Na(g). In biomass combustion or straw and sludge gasification, increasing pressure enhances the release of HCl(g) and reduces the amount of KCI(g), NaCl(g), KCI(g), or NaOH(g) at high temperatures. However, during wood gasification, the pressure enhances the formation of KOH(g) and KCI(g) and reduces the release of K(g) and HCl(g) at high temperatures. During wood and sewage sludge pyrolysis, nitrogen addition enhances the formation of KCN(g) and NaCN(g) and reduces the release of K(g) and Na(g). Kaolin addition in straw combustion may enhance the formation of potassium aluminosilicate in ash and significantly reduces the release of KCl(g) and KOH(g) and increases the formation of HCl(g).
Resumo:
The concentrations of alkylphenols (APs) were investigated in water, sediments and submersed macrophytes from the Moon Lake, Wuhan city, China. The water samples contained APs, ranging up to 26.4 mu g l(-1) for nonylphenol (NP) and 0.68 mu g l(-1) for octylphenol (OP). APs were found in the sediment samples with concentrations ranging from 4.08 to 14.8 for NP and from 0.22 to 1.25 mu g l(-1) dry weight for OP. The samples from the site near former sewage inlet showed the highest concentrations of APs in both water and sediments. The results of distribution pattern and dynamics of NP and OP in submersed macrophytes of the Moon Lake showed that the two pollutants were all found in Myriophyllum verticillatum, Elodea nuttallii, Ceratophyllum oryzetorum, and Potamageton crispus collected from the Moon Lake. For NP, M. verticillatum had the highest capacity of accumulation, followed by E. nuttallii, C. oryzetorum and P. crispus. However the distribution pattern of OP differed from that of NP, and the highest amount of accumulation was observed in E. nuttallii, followed by M. verticillatum, P. crispus, and C. oryzetorum. The temporal pattern of APs was also observed in submersed macrophytes from March to May, and the highest accumulation period was in May. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Temporal and spatial dynamics of nitrogen in lake and interstitial water were studied monthly in a large shallow, eutrophic lake in subtropical China from October 2002 to September 2003. The distribution of nitrogen was consistent with the idea that high nitrogen concentrations in the western part of the lake resulted from high levels of the nutrients from the surrounding cities through sewage-drainage systems. Nitrate was the predominant form of nitrogen in the overlying water, while ammonium was predominant in the interstitial water, indicating that strong oxidative nutrient regeneration occurred near the sediment-water interface. Nitrate could be an important dissolved inorganic matter source for phytoplankton, which in turn influenced the seasonal variations of nitrate concentrations in lake water. Significant positive correlation between ammonium fluxes and water temperature was observed and could probably be attributed to the intensified ammonification and nitrate reduction with increased temperature. Positive correlation between ammonium fluxes and algae biomass and Chl a concentrations may indicate that phytoplankton was an important factor driving ammonium fluxes in our study lake, and vice versa that higher fluxes of ammonium supported a higher biomass of the phytoplankton.
Resumo:
The paper studied two estrogenic pollutants, 4-nonylphenol (NP) and 4-tert-octylphenol (OP) in water, suspended particle (SP) and sediments in urban eutrophic lakes. The concentrations of NP ranged from 1.94 to 32.85 mu g/l, 0.876 to 31.13 mu g/l and 3.54 to 32.43 mu g/g dry weight (dw) in water, suspended particle (SP) and sediments, respectively, and that of OP from 0.027 to 1.44 mu g/l, 0.008 to 1.777 mu g/l and 0.058 to 1.245 mu g/g dw in water, suspended particle (SP) and sediments, respectively. An increasing trend in the concentration was noticed in all matrices close to the sewage inlets, which was found to be the major factor affecting the spatial distribution of alkylphenols (APs) in the lakes. Due to restoration of submerged macrophytes, which might accumulate APs, the contaminations of APs in the Little Moon Lake (LML) and the Little Lotus Lake (LLL) were lower than those in the Big, Moon Lake (BML) and the Bier Lotus Lake (BLL). A reasonable correlation of NP and OP was obtained among water, suspended particle and sediment. The possible environmental stress of APs concentration on aquatic organisms in Wuhan urban lakes was also discussed.
Resumo:
Temporal and spatial changes in delta(13)C and delta(15)N of seston (mainly phytoplankton) and isotopic relationship between seston and the lake anchovy (Coilia ectenes) were studied in the large eutrophic freshwater Lake Chaohu in China. Much of the spatial and temporal variation in delta(13)C of lake anchovies was explained by variation in seston, indicating a strong link between pelagic primary production and higher order consumers. Because the lake is shallow, there were no significant differences in delta(13)C and delta(15)N of seston between surface and overlying waters. Spatially, the relatively high delta(13)C and delta(15)N of seston in the western part of the lake might be due to high levels of anthropogenically derived N and C introduced from the surrounding cities through sewage drainage systems. The trophic position of the lake anchovy in the food web of Lake Chaohu was estimated to be 2.9-4.1 (3.5 +/- 0.4), which agrees well with the previous stomach content analysis suggesting that the lake anchovy fed both on zooplankton and small planktivorous fishes.
Resumo:
This paper describes the long-term dynamics of phosphorus concentrations in both the lake water and the sediment in a subtropical Chinese lake, Lake Donghu. The total phosphorus (TP) concentration in the lake water experienced an upward trend from the 1950s, and peaked in 1983/1984, but declined obviously afterwards. From the 1950s to the 1990s, TP content in the upper 10 cm sediment of the lake increased steadily from 0.307 to 1.68 mg Pg DW-1 at Station I and from 0.151 to 0.89 mg Pg DW-1 at Station II, respectively. The TP increase in the lake water before mid-1980s was mainly attributed to the massive input of sewage P. The outbreak of cyanobacterial blooms coincided with the peaks of TP and Orthophosphate (PO4-P) in the water in mid-1980s, and the maximum TP of the water reached as high as 1.349 mg/1 at Station I and 0.757 mg/l at Station II (in 1984), respectively. The declines of TP and PO4-P in the water after mid-1980s was coincident with the disappearance of cyanobacterial bloom. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Budgets and dynamics of nitrogen and phosphorus in Lake Donghu were investigated from Oct. 1997 to Sept. 1999. The water residence time was estimated to be 89 days in 1997-1998 and 124 days in 1998-1999. The total external loadings were 53 g N m(-2) yr(-1) and 3.2 g P m(-2) yr(-1) in 1997-1998, and 42 g N m(-2) yr(-1) and 3.1 g P m(-2) yr(-1) in 1998-1999. On average, about 80% of nitrogen and phosphorus input was from sewage outlets, while the rest was from land runoff and precipitation. Ammonium ion was the most abundant form of inorganic nitrogen in the sewage. The nutrient output was mainly through water outflow and fish catch. The percentages of nutrients in fish were estimated to be 7.8%-11.2% for nitrogen and 47.6%- 49.6% for phosphorus. Lake Donghu has a very high nutrient retention (63% for nitrogen and 79% for phosphorus) mainly due to its closure and long water residence time. Sedimentation is an important nutrient retention mechanism in this lake. Using mass balance method, we estimated that denitrification of Lake Donghu involves about 50% of the retained nitrogen. Lake Donghu is rich in inorganic nitrogen and phosphorus and showed great seasonal variation.