17 resultados para SEEP CARBONATES

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we reported the fatty-acids and their δ 13C values in seep carbonates collected from Green Canyon lease block 185 (GC 185; Sample GC-F) at upper continental slope (water depth: ∼540 m), and Alaminos Canyon lease block 645 (GC 645; Sample AC-E) at lower continental slope (water depth: ∼2200 m) of the Gulf of Mexico. More than thirty kinds of fatty acids were detected in both samples. These fatty acids are maximized at C16. There is a clear even-over-odd carbon number predominance in carbon number range. The fatty acids are mainly composed of n-fatty acids, iso-/anteiso-fatty acids and terminally branched odd-numbered fatty acids (iso/anteiso). The low δ 13C values (−39.99‰ to.32.36‰) of n-C12:0, n-C13:0, i-C14:0and n-C14:0 suggest that they may relate to the chemosynthetic communities at seep sites. The unsaturated fatty acids n-C18:2 and C18:1Δ9 have the same δ 13C values, they may originate from theBeggiatoa/Thioploca. Unlike other fatty acids, the terminally branched fatty acids (iso/anteiso) show lowerδ 13C values (as low as −63.95‰) suggesting a possible relationship to sulfate reducing bacteria, which is common during anaerobic oxidation of methane at seep sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文通过对墨西哥湾Bush Hill 的5个冷泉碳酸盐岩样品和Alaminos Canyon 的1个冷泉碳酸盐岩样品的总有机质含量、可溶有机质含量、饱和烃、芳烃、脂肪酸、δ13C组成分布特征和部分地球化学参数的研究,探讨了冷泉碳酸盐岩中有机质来源、成熟度和沉积环境。 Bush Hill的冷泉碳酸盐岩样品的总有机碳为0.78-9.02%,可溶有机质含量5.77-65.06mg/g。总有机碳达9.02%的GC-B样品高碳数正构烷烃奇偶优势明显,存在荧蒽、芘和苝系列化合物,表明该样品有陆源物质的输入,并明显受深部渗漏原油的影响,其中烷烃的δ13C为-27.64~-32.36‰,正构脂肪酸δ13C为-26.52~-39.99‰,与现代菌藻类及下伏油气藏的δ13C值(-27~-31‰)相似,表明样品中的有机质主体可能来源于深部油气藏。其余4个Bush Hill冷泉碳酸盐岩样品和1个Alaminos Canyon冷泉碳酸盐岩样品正构烷烃的低碳优势明显,而奇偶优势不明显,低碳数分布的环己烷和长链烷基苯,以及三芳甾烷和甲基三芳甾烷的存在,推断这些样品的母质以菌藻类来源为主。 所有分析样品的甾烷成熟度参数C29ββ/(ββ+αα)为0.28-0.40,C2920S/(20S + 20R)为0.42-0.61、及C20-C21三芳孕甾烷TA(Ⅰ)/C26-C28三芳甾烷TA(Ⅱ)为0.49都说明样品的有机质成熟度较低,。 AC深水区AC-E样品UCM隆起不明显,Bush Hill浅水区样品(GC-B、GC-D、GC-F、GC-G,GC-H)UCM隆起均十分明显,这种隆起的形成是因为正烷烃、甚至五环三萜烷遭受生物降解。被微生物降解的正构烷烃与未被降解的环烷烃和支链烷烃等形成不能被溶解的复杂混合物(UCM)。因此,UCM隆起通常被认为是有机质遭受生物降解最直接的证据。深水区AC-E和Bush Hill浅水区GC-F样品中芴、氧芴和硫芴之间的丰度关系为硫芴﹥芴﹥氧芴,表明其为弱氧化-弱还原的沉积环境。具有较负碳同位素组成(-63.95‰ ~ -50.48‰)的异构/反异构脂肪酸是硫酸盐还原细菌的典型生物标志化合物,进一步证实冷泉碳酸盐岩的形成与甲烷缺氧氧化作用有关。 关键词:墨西哥湾 冷泉碳酸盐岩 有机质组成分布 单体烃碳同位素 沉积环境

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7-14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in delta C-13 (-33.85 parts per thousand to -39.53 parts per thousand Peedee Belemnite (PDB)) and were enriched in delta O-18 (5.16-5.60 parts per thousand PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched O-18 levels. Furthermore, the strongly depleted delta C-13 values (-60.7 parts per thousand to -61.6 parts per thousand PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexaalkylguanidinium halides exhibit an efficient catalytic activity in the synthesis of cyclic carbonates from, epoxides and carbon dioxide. By this method cyclic carbonates can be obtained in a high yield and a high selectivity at a low temperature and atmospheric pressure. This procedure is easy for the product isolation and recycling of the catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors would like to thank Jin Sun, Jian Sun, Liangliang Kong, Nianshuang Wang, Chunhui Wang, Linbao Zhang and Ying Zhang for their assistance in the project. This work was supported by China Ocean Mineral Resources R&D Association grants DYXM-115-02-2-20 and DYXM-115-02-2-6, Hi-Tech Research and Development Program of China grant 2007AA091903, China National Natural Science Foundation grant 40576069, National Basic Research Program of China grant 2009CB219506 and the Fundamental Research Funds for the Central Universities of China grant 09CX05005A. M. G. K. was funded by incentive funds provided by the UofL-EVPR office and the US National Science Foundation (EF-0412129).