16 resultados para SCALAR FIELD
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The statistical-mechanics theory of the passive scalar field convected by turbulence, developed in an earlier paper [Phys. Fluids 28, 1299 (1985)], is extended to the case of a small molecular Prandtl number. The set of governing integral equations is solved by the equation-error method. The resultant scalar-variance spectrum for the inertial range is F(k)~x−5/3/[1+1.21x1.67(1+0.353x2.32)], where x is the wavenumber scaled by Corrsin's dissipation wavenumber. This result reduces to the − (5)/(3) law in the inertial-convective range. It also approximately reduces to the − (17)/(3) law in the inertial-diffusive range, but the proportionality constant differs from Batchelor's by a factor of 3.6.
Resumo:
Classical statistical mechanics is applied to the study of a passive scalar field convected by isotropic turbulence. A complete set of independent real parameters and dynamic equations are worked out to describe the dynamic state of the passive scalar field. The corresponding Liouville equation is solved by a perturbation method based upon a Langevin–Fokker–Planck model. The closure problem is treated by a variational approach reported in earlier papers. Two integral equations are obtained for two unknown functions: the scalar variance spectrum F(k) and the effective damping coefficient (k). The appearance of the energy spectrum of the velocity field in the two integral equations represents the coupling of the scalar field with the velocity field. As an application of the theory, the two integral equations are solved to derive the inertial-convective-range spectrum, obtaining F(k)=0.61 −1/3 k−5/3. Here is the dissipation rate of the scalar variance and is the dissipation rate of the energy of the velocity field. This theoretical value of the scalar Kolmogorov constant, 0.61, is in good agreement with experiments.
Resumo:
Thermal stress wave and spallation in aluminium alloy exposed to a high fluency and low energy electron beams are studied theoretically. A simple model for the study of energy deposition of electrons in materials is presented on the basis of some empirical formulae. Under the stress wave induced by energy deposition, microcracks and/or microvoids may appear in target materials, and in this case, the inelastic volume deformation should not vanish. The viscoplastic model proposed by Bodner and Partom with corresponding Gurson's yield function requires modification for this situation. The new constitutive model contains a scalar field variable description of the material damage which is taken as the void volume fraction of the polycrystalline material. Incorporation of the damage parameter permits description of rate-dependent, compressible, inelastic deformation and ductile fracture. The melting phenomenon has been observed in the experiment, therefore one needs to take into account the melting process in the intermediate energy deposition range. A three-phase equation of state used in the paper provides a more detailed and thermodynamical description of metals, particularly, in the melting region. The computational results based on the suggested model are compared with the experimental test for aluminium alloy, which is subjected to a pulsed electron beam with high fluency and low energy. (C) 1997 Elsevier Science Ltd.
Resumo:
The properties of baryons in nuclear matter are analysed in the relativistic mean-field theory(RMF). It is found that the scalar field sigma meson affects the properties of baryon at high density. A density dependent scalar coupling g(sigma)(N) is determined according to the idea of quark-meson coupling model and extended to RMF. It is shown that g(sigma)(N), affects the property of nuclear matter weakly at low density, but strongly at high density. The relation between the scalar density rho(S) and the nuclear density rho and the effective mass of the pentaquark circle minus(+) are studied with the density dependent coupling constant. The density dependent scalar coupling obviously affects the effective masses of baryons in nuclear matter, especially at high density.
Resumo:
Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.
Resumo:
We extend the recently proposed Kerr/CFT correspondence to examine the dual conformal field theory of four-dimensional Kaluza-Klein black hole in Einstein-Maxwell-Dilaton theory. For the extremal Kaluza-Klein black hole, the central charge and temperature of the dual conformal field are calculated following the approach of Guica, Hartman, Song and Strominger. Meanwhile, we show that the microscopic entropy given by the Cardy formula agrees with Bekenstein-Hawking entropy of extremal Kaluza-Klein black hole. For the non-extremal case, by studying the near-region wave equation of a neutral massless scalar field, we investigate the hidden conformal symmetry of Kaluza-Klein black hole, and find the left and right temperatures of the dual conformal field theory. Furthermore, we find that the entropy of non-extremal Kaluza-Klein black hole is reproduced by Cardy formula. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We investigate the effect of the calar-isovector delta-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the frame work of the relativistic mean field theory. The influence of the delta-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npe mu neutron star matter. We find that inclusion of the delta-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the delta-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the delta-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, where as inclusion of the delta-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the delta-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Sigma hyperons.
Resumo:
Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.
Resumo:
By generalization of the methods presented in Part I of the study [J. Opt. Soc. Am. A 12, 600 (1994)] to the four-dimensional (4D) Riemannian manifold case, the time-dependent behavior of light transmitting in a medium is investigated theoretically by the geodesic equation and curvature in a 4D manifold. In addition, the field equation is restudied, and the 4D conserved current of the optical fluid and its conservation equation are derived and applied to deduce the time-dependent general refractive index. On this basis the forces acting on the fluid are dynamically analyzed and the self-consistency analysis is given.
Resumo:
The analytical vectorial structure of HGB is investigated in the far field based on the vector plane wave spectrum and the method of stationary phase. The energy flux distributions of HGB in the far-field, which is composed of TE term and TM term, are demonstrated. The physics pictures of HGB is illustrated from the vectorial structure, which is important to understand the theoretical aspects of both scalar and vector HGB propagation. (c) 2008 Optical Society of America.
Resumo:
The far-field intensity distribution (FFID) of a beam generated by a phase-unifying mirror resonator was investigated based on scalar diffraction theory. Attention was paid to the parameters, such as obscuration ratio and reflectivity of the phase-unifying mirror, that determine the FFID. All analyses were limited to the TEM00 fundamental mode. (c) 2005 Optical Society of America.
Resumo:
The far-field intensity distribution of hollow Gaussian beams was investigated based on scalar diffraction theory. An analytical expression of the M-2 factor of the beams was derived on the basis of the second-order moments. Moreover, numerical examples to illustrate our analytical results are given. (c) 2005 Optical Society of America.
Resumo:
Based on scalar diffraction theory, we investigated far-field intensity distribution (FFID) of beam generated by Gaussian mirror resonator. We found usable analytical expressions of diffracted field with respect to variation of diffraction parameters. Particular attention was paid to the parameters such as mirror spot size and radius of the Gaussian mirror, which determine the FFID. All analyses were limited to TEM00 fundamental mode. (c) 2004 Elsevier B.V. All rights reserved.