52 resultados para SAT-solvers, Small Hard Benchmarks
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Magnetic domain structure of hard magnetic Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic force microscopy. In the magnetic force images it is shown that the exchange interaction type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. As the scale of the magnetic domain is much larger than the size of the short-range ordered atomic clusters existing in the BMG, it is believed that the large areas of magnetic contrast are actually a collection of a group of clusters aligned in parallel by strong exchange coupling interaction. After fully crystallization, the BMG exhibits paramagnetism. No obvious magnetic contrast is observed in the magnetic force images of fully crystallized samples, except for a small quantity of ferromagnetic crystalline phase with low coercivity and an average size of 900 nm.
Resumo:
Nanoindentation experiments on Al/glass systems show that, as the indentation depth increases, the hardness decreases during a shallow indentation, and increases when the indenter tip approaches the film–substrate interface. We associate the rise in hardness during two stages with the strong strain gradient effects, the first stage is related with the small scale effects and the second stage with the strain gradient between the indenter and the hard substrate. Using the strain gradient theory proposed by Chen and Wang and the classical plasticity theory, the observed nanoindentation behavior is modeled and analyzed by means of the finite element method, and it is found that the classical plasticity cannot explain the experiment results but the strain gradient theory can describe the experiment data at both shallow and deep indentation depths very well. The results prove that both the strain gradient effects and substrate effects exist in the nanoindentation of the film–substrate system.
In-situ observation of drying process of a latex droplet by synchrotron small-angle X-ray scattering
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
Poly(epsilon-caprolactone)-based segmented polyurethanes (PCLUs) were prepared from poly(epsilon-caprolactone) diol, diisocyanates (DI), and 1,4-butanediol. The DIs used were 4,4'-diphenylmethane diisocyanate (MDI), 2,4-toluenediisocyanate (TDI), iso-phorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small-angle X-ray scattering, and dynamic mechanical analysis were employed to characterize the two-phase structures of all PCLUs. It was found that HDI- and MDI-based PCLUs had higher degree of microphase separation than did IPDI- and TDI-based PCLUs, which was primarily due to the crystallization of HDI- and MDI-based hard-segments. As a result, the HDI-based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard-segment domains during the sample deformation was responsible for the incomplete shape-recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation.
Resumo:
First-principle calculations are performed to investigate the structural, elastic, and electronic properties of ReB2 and WB2. The calculated equilibrium structural parameters of ReB2 are consistent with the available experimental data. The calculations indicate that WB2 in the P6(3)/mmc space group is more energetically stable under the ambient condition than in the P6/mmm. Based on the calculated bulk modulus, shear modulus of polycrystalline aggregate, ReB2 and WB2 can be regarded as potential candidates of ultra-incompressible and hard materials. Furthermore, the elastic anisotropy is discussed by investigating the elastic stiffness constants. Density of states and electron density analysis unravel the covalent bonding between the transition metal atoms and the boron atoms as the driving force of the high bulk modulus and high shear modulus as well as small Poisson's ratio.
Resumo:
Glass transition and crystallization process of bulk Nd60Al10Fe20Co10 metallic glass were investigated by means of dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscopy (SEM). It is shown that the glass transition and onset crystallization temperature determined by DMTA at a heating rate of 0.167 K/s are 480 and 588 K respectively. The crystallization process of the metallic glass is concluded as follows: amorphous alpha-->alpha' + metastable FeNdAl novel phase -->alpha' + primary delta phase-->primary delta phase + eutectic delta phase Nd3Al phase + Nd3Co phase. The appearance of hard magnetism in this alloy is ascribed to the presence of amorphous phase with highly relaxed structure. The hard magnetism disappeared after the eutectic crystallization of amorphous phase.
Resumo:
For brittle solids containing numerous small cracks, a micromechanical damage theory is presented which accounts for the interactions between different small cracks and the effect of the boundary of a finite solid, and includes growth of the pre-existing small cracks. The analysis is based on a superposition scheme and series expansions of the complex potentials. The small crack evolution process is simulated through the use of fracture mechanics incorporating appropriate failure criteria. The stress-strain relations are obtained from the micromechanics analysis. Typical examples are given to illustrate the potential capability of the proposed theory. These results show that the present method provides a direct and efficient approach to deal with brittle finite solids containing multiple small cracks. The stress-strain relation curves are evaluated for a rectangular plate containing small cracks.
Resumo:
A perturbation method is used to examine the linear instability of thermocapillary convection in a liquid bridge of floating half-zone filled with a small Prandtl number fluid. The influence of liquid bridge volume on critical Marangoni number and flow features is analyzed. The neutral modes show that the instability is mainly caused by the bulk flow that is driven by the nonuniform thermocapillary forces acting on the free surface. The hydrodynamic instability is dominant in the case of small Prandtl number fluid and the first instability mode is a stationary bifurcation. The azimuthal wave number for the most dangerous mode depends on the liquid bridge volume, and is not always two as in the case of a cylindrical liquid bridge with aspect ratio near 0.6. Its value may be equal to unity when the liquid bridge is relatively slender.
Resumo:
The transition from hard to soft magnetic behaviour with increasing quenching rate is shown for Nd60WAl10Fe20Co10 melt-spun ribbons with different thickness. Microstructure and magnetic domain structure of ribbons were studied by magnetic force microscopy (MFM). Particle sizes < 5 nm decreasing gradually with increasing quenching rate were deduced from topographic images which differ from large-scale magnetic domains with a periodicity of about 350 nm in all ribbons irrespective the coercivity. This indicates that the magnetic properties of the alloy are governed by interaction of small magnetic particles. It is concluded that the presence of short-range-ordered structures with a local ordering similar to the Al metastable Nd-Fe binary phase is responsible for the hard magnetic properties in samples subjected to relatively low quenching rate.
Resumo:
A Monte Carlo simulation is performed to study the dependence of collision frequency on interparticle distance for a system composed of two hard-sphere particles. The simulation quantitatively shows that the collision frequency drops down sharply as the distance between two particles increases. This characteristic provides a useful evidence for the collision-reaction dynamics of aggregation process for the two-particle system described in the other reference.
Resumo:
用去离子水及有机液体在内径约为25μm的石英圆管内进行了流量特性实验.液体分子量范围为18~160,动力黏性系数的范围为0.5~1 mPa.s.实验雷诺数范围为Re<8.所用有机液体为:四氯化碳、乙基苯及环己烷都是非极性液体,其分子结构尺度小于1 nm.实验结果表明,在定常层流条件下,圆管内的液体流量与两端压力差成正比,其压力-流量关系仍符合经典的Hagen-Poiseuille流动.这说明非极性小分子有机液体在本实验所用微米尺度管道中其流动规律仍符合连续介质假设.鉴于微尺度流动实验的特殊性,文中还介绍了微流动实验装置,分析了微尺度流动测量误差来源及提高测量精度的措施.
Resumo:
Squeeze-film effects of perforated plates for small amplitude vibration are analyzed through modified Reynolds equation (MRE). The analytical analysis reckons in most important influential factors: compressibility of the air, border effects, and the resistance caused by vertical air flow passing through perforated holes. It is found that consideration of air compressibility is necessary for high operating frequency and small ratio of the plate width to the attenuation length. The analytical results presented in this paper agree with ANSYS simulation results better than that under the air incompressibility assumption. The analytical analysis can be used to estimate the squeeze-film effects causing damping and stiffness added to the system. Since the value of Reynolds number involved in this paper is low (< 1), inertial effects are neglected.
Resumo:
Glass transition and thermal stability of bulk Nd60Al10Fe20Co10 metallic glass were investigated by means of dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The glass transition temperature, not revealed by DSC, is alternatively determined by DMTA via storage modulus E' and loss modulus E" measurement to be 498 K at a heating rate of 0.167 K s (-1). The calculated reduced glass transition temperature (T-g/T-m) is 0.63. The large value of T-g/T-m of this alloy is consistent with its good glass-forming ability. The crystallization process of the metallic glass is concluded as follows: amorphous --> amorphous + metastable FeNdAl phase --> amorphous + primary delta-FeNdAl phase --> primary delta-phase + eutectic delta-phase + Nd3Al + Nd3Co. The appearance of hard magnetism in this alloy is ascribed to the presence of amorphous phase with highly relaxed structure. The hard magnetism disappeared after the eutectic crystallization of the amorphous phase. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A cyclic bending experiment is designed to investigate the interface fracture behaviour of a hard chromium coating on a ductile substrate with periodic surface hardened regions. The unique deflection pattern of the vertical cracks after they run through the coating and impinge at the interface is revealed experimentally. A simple double-layer elastic beam model is adopted to investigate the interfacial shear stresses analytically. A FE model is employed to compute the stresses of the tri-phase structure under a single round of bending, and to investigate the effect of the loading conditions on the deflection pattern of the vertical cracks at the interface. (C) 2008 Elsevier Ltd. All rights reserved.