103 resultados para Runga-Kutta formulas.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In addition to the layer thickness and effective Young’s modulus, the impact of the kinematic assumptions, interfacial condition, in-plane force, boundary conditions, and structure dimensions on the curvature of a film/substrate bilayer is examined. Different models for the analysis of the bilayer curvature are compared. It is demonstrated in our model that the assumption of a uniform curvature is valid only if there is no in-plane force. The effects of boundary conditions and structure dimensions, which are not-fully-included in previous models are shown to be significant. Three different approaches for deriving the curvature of a film/substrate bilayer are presented, compared, and analyzed. A more comprehensive study of the conditions regarding the applicability of Stoney’s formula and modified formulas is presented.
Resumo:
To resolve the diffraction problems of the pulsed wave field directly in the temporal domain, we extend the Rayleigh diffraction integrals to the temporal domain and then discuss the approximation condition of this diffraction formula. (C) 1997 Optical Society of America.
Resumo:
Based on a new finite-difference scheme and Runge-Kutta method together with transparent boundary conditions (TBCs), a novel beam propagation method to model step-index waveguides with tilt interfaces is presented. The modified scheme provides an precies description of the tilt interface of the nonrectangular waveguide structure, showing a much better efficiency and accuracy comparing with the previously presented formulas.
Resumo:
用数值模拟方法来研究气-液两相流动与传热现象是当今多相流领域的一个热门课题.由于两相流固有的复杂性,气-液两相流界面迁移现象的数值模拟一直是两相流研究中的一大难点.本文介绍了捕捉气-液两相流相界面运动的水平集方法(Level Set)及其研究进展,介绍了求解Level Set输运方程的3种方法,即一般差分格式、Superbee-TVD格式和Runge-Kutta法-5阶WENO组合格式.结合主流场的求解,分别用这3种方法对4种典型相界面在5种流场中的迁移特性进行了模拟计算,并对计算结果进行了比较和分析.结果表明,Runge-Kutta法-5阶WENO组合格式求解Level Set输运方程的效果最好,在以后的计算中将主要采用这种组合格式来进行气-液相界面输运方程的求解.
Resumo:
The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.
Resumo:
A new finite difference method for the discretization of the incompressible Navier-Stokes equations is presented. The scheme is constructed on a staggered-mesh grid system. The convection terms are discretized with a fifth-order-accurate upwind compact difference approximation, the viscous terms are discretized with a sixth-order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth-order difference approximation on a cell-centered mesh. Time advancement uses a three-stage Runge-Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented.
Resumo:
The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach number Mc = 0.8 and Re = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of Lambda-vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.
Resumo:
Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.
Resumo:
Non-equilibrium molecular dynamics (NEMD) simulations are performed to calculate thermal conductivity. The environment-dependent interatomic potential (EDIP) potential on crystal silicon is adopted as a model system. The issues are related to nonlinear response, local thermal equilibrium and statistical averaging. The simulation results by non-equilibrium molecular dynamics show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced at the nanometre scale. The effect of size on the thermal conductivity is also obtained by a theoretic analysis of the kinetic theory and formulas of the heat capacity. The analysis reveals that the contributions of phonon mean free path (MFP) and phonon number in a finite cell to thermal conductivity are very important.
Resumo:
An analysis on crack creep propagation problem of power-law nonlinear viscoelastic materials is presented. The creep incompressilility assumption is used. To simulate fracture behavior of craze region, it is assumed that in the fracture process zone near the crack tip, the cohesive stress sigma(f) acts upon the crack surfaces and resists crack opening. Through a perturbation method, i. e., by superposing the Mode-I applied force onto a referential uniform stress state, which has a trivial solution and gives no effect on the solution of the original problem, the nonlinear viscoelastic problem is reduced to linear problem. For weak nonlinear materials, for which the power-law index n similar or equal to 1, the expressions of stress and crack surface displacement are derived. Then, the fracture process zone local energy criterion is proposed and based on which the formulas of cracking incubation time t
Resumo:
The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder, is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies, contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition, the comparison of the surface wave modes is made between theoretical calculations and experimental measurements, and the results are reasonable although there are some differences in the forced frequency.