149 resultados para Rule of the road at sea.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Phosphatidylcholine (PC) and six other PC-similar lipids are coated on interdigital electrodes, IEs, as sensitive membranes. Eight alcohols (C-1-C-4) are tested in a flow system at room temperature. It is found that all responses are log(response)-log(concentration) linear relations. These results agree with Steven's law in psychophysics. Moreover, the thresholds of the sensors are coincident with human olfactory thresholds. The authors have analysed the data of the lipid hypothesis suggested by Kurihara et al. We have found that this hypothesis is also in agreement with Steven's law. Lipid microresistors are real mimicking olfactory sensors. A definition of an olfactory sensor is suggested.
Resumo:
PHOTOSYSTEM-II; CHLOROPHYLL FLUORESCENCE; ULVA-ROTUNDATA; ELECTRON-TRANSPORT; FIELD EXPERIMENTS; O-2 EVOLUTION; QUANTUM YIELD; TEMPERATURE; MACROALGAE; RESPONSES
Resumo:
A 700-year record (1.0-1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMS(14)C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was compared with the Dongge stalagmite delta O-18 record during the mid-Holocene. The upper muddy section of Core EC2005 has been formed mainly by suspended sediments derived from the Changjiang (Yangtze) River mouth since 7.3 ka BP. High precipitation and a strengthened EAWM might have played key roles in the high sedimentation rate (1 324-1 986 cm/ka) between 5.9-5.2 ka BP. The EAWM strengthened when the Asian summer monsoon weakened, especially around 5 500 a BP, which corresponded to a worldwide cold event. The EAWM during the mid-Holocene shows statistically significant solar periodicities at 62 and 11 a. The 5 500 a BP cold event might be resulted from orbital forcing and changes in solar activity.
Resumo:
Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4-8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.
Resumo:
Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.
Resumo:
The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E-W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky-hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N-S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E-W fan channel was probably affected by the E-W fault and the basement morphology.
Resumo:
AXIS(14)C dating and grain-size analysis for Core DD2, located at the north of the Yangtze River-derived mud off the Zhejiang-Fujian coasts in the inner shelf of the East China Sea, provide us a high-resolution grain-size distribution curve varying with depth and time. Data in the upper mud layer of Core DD2 indicate that there are at least 9 abrupt grain-size increasing in recent 2000 years, with each corresponding very well with the low-temperature events in Chinese history, which might result from the periodical strengthening of the East Asian Winter Monsoon (EAWM), including the first-revealed maximum temperature lowering event at around 990 a BP. At the same time, the finer grain size section in Core DD2 agrees well with the Sui-Tang Warming Period (600-1000 a AD) defined previously by Zhu Kezhen, during which the climate had a warm, cold and warm fluctuation, with a dominated cooling period of 750-850 a AD. The Little Ice Age (LIA) can also be identified in the core. It starts around 1450 a AD and was followed by a subsequent cooling events at 1510, 1670 and 1840 a AD. Timing of these cold events revealed here still needs to be further verified owing to some current uncertainty of dating we used in this study.