84 resultados para Rubisco small subunit gene ( rbcS) Promoter
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Rubisco CO2 Rubisco Rubisco Rubisco CO2 Rubisco RubiscoCO2 CO2 2 C 37 Cys Cys ADP Rubisco rca Rubisco 249 1525 bp cDNA cDNA rca 4 3 rcapCBUbircapCBSrca pCBSUbirca rcaUbiquitin Rubisco ; 1 Ubiquitin rca pCBUbi-antirca rca3097 64S rca2 rcaGUS PCR rca841 bp 1525 bp rca cDNA 251 T1 189/31Southernrca12Western Rubisco pCBUbi antirca ;pCBUbirca ;pCBSUbircapCBSrca T1 rcapCBSrca pCBSUbirca Rubisco Rubisco ;rcapCBUbi-antircaRubisco Rubisco ;pCBUbirca T1 rcapCBSrca pCBSUbirca PSII qP PSII qP ;rcaPSIIFv/FmqP qN ;pCBUbirca rcapCBUbirca ;pCBSrca pCBSUbirca ;rcapCBUbi-antirca Rubisco rcaRubisco Ubiquitin Rubisco
Resumo:
Based on its characteristic oral apparatus, the ciliate subclass Peritrichia has long been recognized as a monophyletic assemblage composed of the orders Mobilida and Sessilida. Following the application of molecular methods, the monophyly of Peritrichia has recently been questioned. We investigated the phylogenetic relationships of the peritrichous ciliates based on four further complete small subunit ribosomal RNA sequences of mobilids, namely Urceolaria urechi, Trichodina meretricis, Trichodina sinonovaculae, and Trichodina ruditapicis. In all phylogenetic trees, the mobilids never clustered with the sessilids, but instead formed a monophyletic assemblage related to the peniculines. By contrast, the sessilids formed a sister clade with the hymenostomes at a terminal position within the Oligohymenophorea. We therefore formally separate the mobilids from the sessilids (Peritrichia sensu stricto) and establish a new subclass, Mobilia Kahl, 1933, which contains the order Mobilida Kahl, 1933. We argue that the oral apparatus in the mobilians and sessilid peritrichs is a homoplasy, probably due to convergent evolution driven by their similar life-styles and feeding strategies. Morphologically, the mobilians are distinguished from all other oligohymenophoreans by the presence of the adhesive disc, this character being a synapomorphy for the Mobilia.
Resumo:
The phylogenetic relationships among peritrichs remain unresolved. In this study, the complete small subunit rRNA (SSrRNA) gene sequences of seven species (Epistylis galea, Campanella umbellaria, Carchesium polypinum, Zoothamnium arbuscula, Vaginicola crystallina, Ophrydium versatile, and Opercularia microdiscum) were determined. Trees were constructed using distance-matrix, maximum-likelihood and maximum-parsimony methods, all of which strongly supported the monophyly of the subclass Peritrichia. Within the peritrichs, 1) E. galea grouped with Opercularia microdiscum and Campanella umbellaria but not the other Epistylis species, which indicates that the genus Epistylis might not be monophyletic; 2) the topological position of Carchesium and Campanella suggested that Carchesium should be placed in the family Zoothammidae, or be elevated to a higher taxonomic rank, and that Campanella should be independent of the family Epistylididae, and probably be given a new rank; and 3) Opisthonecta grouped strongly with Asty/ozoon, which suggested that Opisthonecta species were not the ancestors of the stalked peritrichs.
Resumo:
The peritrichs have been recognized as a higher taxon of ciliates since 1968. However, the phylogenetic relationships among them are still unsettled, and their placement within the class Oligohymenophorea has only been supported by the analysis of the small subunit rRNA gene sequence of Opisthonecta henneguyi. DNA was isolated directly from field-sampled species for PCR, and was used to resolve relationships within the genus Epistylis and to confirm the stability of the placement of peritrichs. Small subunit rRNA gene sequences of Epistylis plicatilis, Epistylis urceolata, Epistylis chysemydis, Epistylis hentscheli, Epistylis wenrichi, and Vorticella campanula were sequenced and analyzed using both distance-matrix and maximum-parsimony methods. In phylogenetic trees, the monophyly of both the genus Epistylis and the subclass Peritrichia was strongly supported, while V. campanula clustered with Vorticella microstoma. The topology in which E. plicatilis and E. hentscheli formed a strongly supported sister clade to E. urceolata, E. chrysemydis, and E. wenrichi was consistent with variations in the thickness of the peristomial lip. We concluded that the peristomial area, especially the. peristomial lip, might be the important phylogenetic character within the genus Epistylis.
Resumo:
The ribosomal RNA molecule is an ideal model for evaluating the stability of a gene product under desiccation stress. We isolated 8 Nostoc strains that had the capacity to withstand desiccation in habitats and sequenced their 16S rRNA genes. The stabilities of 16S rRNAs secondary structures, indicated by free energy change of folding, were compared among Nostoc and other related species. The results suggested that 163 rRNA secondary structures of the desiccation-tolerant Nostoc strains were more stable than that of planktonic Nostocaceae species. The stabilizing mutations were divided into two categories: (1) those causing GC to replace other types of base pairs in stems and (2) those causing extension of stems. By mapping stabilizing mutations onto the Nostoc phylogenetic tree based on 16S rRNA gene, it was shown that most of stabilizing mutations had evolved during adaptive radiation among Nostoc spp. The evolution of 16S rRNA along the Nostoc lineage is suggested to be selectively advantageous under desiccation stress.
Resumo:
To determine the phylogenetic position of Stentor within the Class Heterotrichea, the complete small subunit rRNA genes of three Stentor species, namely Stentor polymorphus, Stentor coeruleus, and Stentor roeseli, were sequenced and used to construct phylogenetic trees using the maximum parsimony, neighbor joining, and Bayesian analysis. With all phylogenetic methods, the genus Stentor was monophyletic, with S. roeseli branching basally.
Resumo:
Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.
Resumo:
A Chlamydomonas reinhardtii (C. reinhardtii) chloroplast expression vector, papc-B, containing the apc-B gene that encodes the beta subunit of the light-harvesting antenna protein allophycocyanin (APC) of cyanobacteria, was constructed and transferred to the chloroplast genome of C. reinhardtii by the biolistic method. The transformants were identified by Southern blot, Western blot and ELISA assays after selection on resistant medium. The recombinant APC beta subunit was expressed in the C. reinhardtii chloroplast and accounted for up to 2-3% (w/w) of the total soluble protein (TSP), suggesting a promising prospect of using C. reinhardtii chloroplasts to produce functional plant-derived proteins.
Resumo:
The x- and y-type high molecular weight (HMW) glutenin subunits are conserved seed storage proteins in wheat and related species. Here we describe investigations on the HMW glutenin subunits from several Pseudoroegneria accessions. The electrophoretic mobilities of the HMW glutenin subunits from Pd. stipifolia, Pd tauri and Pd strigosa were much faster than those of orthologous wheat subunits, indicating that their protein size may be smaller than that of wheat subunits. The coding sequence of the Glu-1St1 subunit (encoded by the Pseudoroegneria stipifolia accession PI325181) was isolated, and found to represent the native open reading frame (ORF) by in vitro expression. The deduced amino acid sequence of Glu-1St1 matched with that determined from the native subunit by mass spectrometric analysis. The domain organization in Glu-1St1 showed high similarity with that of typical HMW glutenin subunits. However, Glu-1St1 exhibited several distinct characteristics. First, the length of its repetitive domain was substantially smaller than that of conventional subunits, which explains its much faster electrophoretic mobility in SDS-PAGE. Second, although the N-terminal domain of Glu-1St1 resembled that of y-type subunit, its C-terminal domain was more similar to that of x-type subunit. Third, the N- and C-terminat domains of Glu-1St1 shared conserved features with those of barley D-hordein, but the repeat motifs and the organization of its repetitive domain were more similar to those of HMW glutenin subunits than to D-hordein. We conclude that Glu-1St1 is a novel variant of HMW glutenin subunits. The analysis of Glu-1St1 may provide new insight into the evolution of HMW glutenin subunits in Triticeae species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A tumor necrosis factor receptor-associated factor 2 binding protein (T2BP) gene was isolated from the grass carp (Ctenopharyngodon idellus) by utilizing suppression subtractive hybridization (SSH) and rapid amplification of cDNA ends (RACE). The grass carp T2BP (GT2BP) gene contains an open reading frame of 579 nucleotide(s) (nt), encoding 193 amino acids, with 23 nt 5'-untranslated region and a long 3'-untranslated region of 434 nt including poly (A), 1 AUUUA motif and 4 AUUUUA motifs. No signal peptide has been detected in the predicted GT2BP, but a characteristic forkhead associated domain is present. The GT2BP mRNA shares 83% identity with the zebrafish DNA sequence, and they both have no introns in the genomic DNA. The putative transcription factor binding sites of GT2BP include two C/EBP alpha binding sites, and one c-Jun binding, one AP-1 binding, and one nuclear factor kappa B (NF kappa B) binding sites. Southern blot analysis revealed that the GT2BP was a single-copy gene. Individual difference was observed in GT2BP expression in examined organs of healthy grass carp. However, the expression of GT2BP in all examined organs in a fish with the highest copepod infection level and the significantly higher expression level in spleen and liver in infected fish may indicate its up-regulation with the parasite infection. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A viperin gene has been cloned from the mandarin fish (Siniperca chuatsi). From the first transcription initiation site, the mandarin fish viperin gene extends 3163 nucleotides to the end of the 3' untranslated region, and it contains six exons and five introns. The open reading frame of the viperin transcript has 1062 nucleotides which encode a 354 amino acid peptide. The amino acid sequence of mandarin fish viperin shows high identities with its homologues in teleosts and mammals except for the first 70 amino acids. A characteristic feature in the viperin promoter region was the presence of five putative ICSBP (IRF8) binding sites and one IRFI binding site. The viperin gene expressed mainly in lymphoid tissues before stimulation, but its expression can be examined in almost all the organs investigated after stimulation with virus or Poly I:C. The expression pattern and promoter sequence may be considered as the indirect evidence that the transcription of viperin is regulated by interferons or interferon induced genes. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An improved method of PCR in which the small segment of conchocelis is amplified directly without DNA extraction was used to amplify a RUBISCO intergenic spacer DNA fragment from nine species of red algal genus Porphyra (Bangiales, Rhodophyta), including Porphyra yezoensis (Jiangsu, China), P. haitanensis (Fujian, China), P. oligospermatangia (Qingdao, China), P. katadai (Qingdao, China), P. tenera (Qingdao, China), P. suborboculata (Fujian, China), P. pseudolinearis (Kogendo, Korea), P. linearis (Devon, England), and P. fallax (Seattle, USA). Standard PCR and the method developed here were both conducted using primers specific for the RUBISCO spacer region, after which the two PCR products were sequenced. The sequencing data of the amplicons obtained using both methods were identical, suggesting that the improved PCR method was functional. These findings indicate that the method developed here may be useful for the rapid identification of species of Porphyra in a germplasm bank. In addition, a phylogenetic tree was constructed using the RUBISCO spacer and partial rbcS sequence, and the results were in concordant with possible alternative phylogenies based on traditional morphological taxonomic characteristics, indicating that the RUBISCO spacer is a useful region for phylogenetic studies.
Resumo:
A goose-type lysozyme (g-lysozyme) gene has been cloned from the mandarin fish (Siniperca chuatsi), with its recombinant protein expressed in Escherichia coli. From the first transcription initiation site, the mandarin fish g-lysozyme gene extends 1307 nucleotides to the end of the 3' untranslated region, and it contains 5 exons and 4 introns. The open reading frame of the glysozyme transcript has 582 nucleotides which encode a 194 amino acid peptide. The 5' flanking region of mandarin fish glysozyme gene shows several common transcriptional factor binding sites when compared with that from Japanese flounder (Paralichthys olivaceus). The recombinant mandarin fish g-lysozyme was expressed in E. coli by using pET-32a vector, and the purified recombinant g-lysozyme shows lytic activity against Micrococcus lysodeikticus. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The geneswere cloned for the two apoprotein subunits, alpha and beta, of phycocyanin from the cyanobacterium Spirulina maxima (=Arthrospira maxima) strain F3. The alpha- and beta-subunit gene-coding regions contain 489 bp and 519 bp, respectively. The beta-subunit gene is upstream from the alpha-subunit gene, with a 111-bp segment separating them. Similarities between the alpha-subunits of S. maxima and nine other cyanobacteria were between 58% and 99%, as were those between the beta-subunits. The maximum similarity between the alpha- and beta-subunits from S. maxima was 27%.